Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Uncompare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Uncompare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Aalborg East PED Relevant Case Study / PED Lab Uncompare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Uncompare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Stor-Elvdal, Campus Evenstad
Lund, Brunnshög district
Roubaix, MustBe0 - Résidence Philippe le Hardi – 125 Rue d’Oran
Aalborg East, Aalborg Municipality, Region of Northern Jutland, Denmark
Amsterdam, Buiksloterham PED
Umeå, Ålidhem district
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityStor-Elvdal, Campus EvenstadLund, Brunnshög districtRoubaix, MustBe0 - Résidence Philippe le Hardi – 125 Rue d’OranAalborg East, Aalborg Municipality, Region of Northern Jutland, DenmarkAmsterdam, Buiksloterham PEDUmeå, Ålidhem district
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesnonoyesyes
PED relevant case studyyesyesnoyesyesnono
PED Lab.nonononoyesnono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyesyes
Annual energy surplusnoyesyesyesnoyesno
Energy communityyesnoyesnonoyesno
Circularitynonoyesnonoyesno
Air quality and urban comfortyesnoyesyesnonono
Electrificationyesnoyesnonoyesno
Net-zero energy costnonononononono
Net-zero emissionnonoyesnonoyesno
Self-sufficiency (energy autonomous)nonononononono
Maximise self-sufficiencynonononoyesnono
Othernoyesyesnononono
Other (A1P004)Energy-flexibilityHolistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030;
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseIn operationIn operationCompletedPlanning PhaseImplementation PhasePlanning Phase
A1P006: Start Date
A1P006: Start date01/13201501/2211/2211/1910/22
A1P007: End Date
A1P007: End date12/24204001/2411/2510/2509/25
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Meteorological open data
  • Monitoring data available within the districts,
  • GIS open datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts
A1P009: OtherGIS open dataset is under constructionhttps://smartcity-atelier.eu/about/lighthouse-cities/amsterdam/
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
        • Umeå Energi
        A1P011: Geographic coordinates
        X Coordinate (longitude):23.81458811.07877077353174613.2324694007695993.165110.0074.904120.2630
        Y Coordinate (latitude):38.07734961.4260442039911255.7198979220719350.693757.04102852.367663.8258
        A1P012: Country
        A1P012: CountryGreeceNorwaySwedenFranceDenmarkNetherlandsSweden
        A1P013: City
        A1P013: CityMunicipality of KifissiaEvenstad, Stor-Elvdal municipalityLundRoubaixAalborgAmsterdamUmeå
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CsaDwcDfbCfbDfbCfbDfb
        A1P015: District boundary
        A1P015: District boundaryVirtualGeographicGeographicOtherVirtualFunctionalGeographic
        OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodPEB
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:PublicPublicPrivatePublicMixedPublic
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle Owner
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED22200160
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]10000150000014422850042000
        A1P020: Total ground area
        A1P020: Total ground area [m²]150000025003130800052000
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area0011001
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenonoyesyesnoyesno
        A1P022a: Add the value in EUR if available [EUR]999999990
        A1P022b: Financing - PRIVATE - ESCO schemenonononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernonononononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnonoyesnononono
        A1P022d: Add the value in EUR if available [EUR]1000000
        A1P022e: Financing - PUBLIC - National fundingnoyesyesnononono
        A1P022e: Add the value in EUR if available [EUR]30000000
        A1P022f: Financing - PUBLIC - Regional fundingnonoyesyesnonono
        A1P022f: Add the value in EUR if available [EUR]30000000
        A1P022g: Financing - PUBLIC - Municipal fundingnonoyesyesnonono
        A1P022g: Add the value in EUR if available [EUR]180000000
        A1P022h: Financing - PUBLIC - Othernonononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnonoyesyesnoyesno
        A1P022i: Add the value in EUR if available [EUR]2000000
        A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesnonoyesnono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: OtherRetrofitted through various subsidies
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Boosting local businesses,
        • Boosting local and sustainable production
        • Other
        • Positive externalities,
        • Boosting local businesses,
        • Boosting local and sustainable production
        • Boosting local businesses,
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products
        A1P023: OtherWorld class sustainable living and research environments
        A1P024: More comments:
        A1P024: More comments:The building comprises 32 homes. The refurbishment complies with EnergieSprong specifications. This implies a performance of E=0 over 25 years.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]3.6
        Contact person for general enquiries
        A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaÅse Lekang SørensenMarkus PaulssonJulien HolgardKristian OlesenOmar ShafqatGireesh Nair
        A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamSINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart CitiesCity of LundVilogiaAalborg UniversityAmsterdam University of Applied SciencesUmea Municipality
        A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesOtherResearch Center / UniversityResearch Center / UniversityMunicipality / Public Bodies
        A1P028: OtherSocial Housing Company
        A1P029: Emailgiavasoglou@kifissia.grase.sorensen@sintef.nomarkus.paulsson@lund.sejulien.holgard@vilogia.frKristian@plan.aau.dko.shafqat@hva.nlgireesh.nair@umu.se
        Contact person for other special topics
        A1P030: NameStavros Zapantis - vice mayorEva DalmanJulien HolgardAlex Søgaard MorenoOmar Shafqat
        A1P031: Emailstavros.zapantis@gmail.comeva.dalman@lund.sejulien.holgard@vilogia.frasm@aalborg.dko.shafqat@hva.nl
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Water use,
        • Waste management,
        • Construction materials,
        • Other
        • Energy efficiency,
        • Energy production,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Indoor air quality,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Water use,
        • Waste management,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        A2P001: OtherWalkability and biking
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.LundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions.Stakeholder engagement, expert energy system analysis, future scenariosCity vision, Innovation AteliersSimulation tools: City Energy Analyst and Polysun
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoNoNoNoYesNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceYesYesYesNoNoYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceYesYesNoNoNoNo
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationAt Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.Today electrically charged vehicles are included in the energy balance. In the future also other fuels should be included.Large combined industrial, residential, and commercial area with complex flows of in- and outgoing traffic.
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.7725218
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.76301480
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesyesyesyesnoyesyes
        A2P011: PV - specify production in GWh/annum [GWh/annum]0.0650.249
        A2P011: Windnonoyesnoyesnono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydrononononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnoyesnononoyesno
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
        A2P011: Biomass_peat_elnonononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnonononononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernonononoyesnono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnononononoyesno
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnoyesnonononono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.045
        A2P012: Biomass_heatnoyesnononoyesno
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.35
        A2P012: Waste heat+HPnonoyesnoyesyesno
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]200300
        A2P012: Biomass_peat_heatnonononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnonononononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnonononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernonononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notesListed values are measurements from 2018. Renewable energy share is increasing.Very little wind production currently exists in the area. The electricity production of the waste incineration plant will be included at a later date. Aalborg East is partly a remarkable area for hosting a Portland cement factory that accounts for a substantial share of Denmark’s total CO2 emissions. In turn, it also provides waste heat to the district heating grid for all of Aalborg city and some of the smaller towns that are connected to the same DH grid.
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]1.5000.0846206.1
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]10.11399
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnononononoyesno
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnononononoyesno
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnononononoyesno
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernonononoyesnono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]300
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnonoyesnonoyesno
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
        A2P018: Windnonoyesnonoyesno
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydrononoyesnonoyesno
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnonoyesnonoyesno
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnononononoyesno
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnononononoyesno
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernonononononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnononononoyesno
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnononononoyesno
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnononononoyesyes
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnononononoyesyes
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnononononoyesno
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnononononoyesno
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnononononoyesno
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernonononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary0000000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]250
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Security
        A2P022: Health
        A2P022: Education
        A2P022: MobilityMaximum 1/3 transport with car
        A2P022: EnergyLocal energy production 150% of energy needEnergy
        A2P022: Water
        A2P022: Economic development
        A2P022: Housing and Community50% rental apartments and 50% owner apartments
        A2P022: Waste
        A2P022: Other
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsnoyesyesyesyesyesyes
        A2P023: Solar thermal collectorsnoyesyesnoyesnono
        A2P023: Wind Turbinesnonoyesnononono
        A2P023: Geothermal energy systemnonoyesnonoyesno
        A2P023: Waste heat recoverynonoyesnoyesyesno
        A2P023: Waste to energynonononoyesyesno
        A2P023: Polygenerationnonoyesnononono
        A2P023: Co-generationnoyesnonononono
        A2P023: Heat Pumpnonoyesnoyesyesno
        A2P023: Hydrogennonoyesnononono
        A2P023: Hydropower plantnonononononono
        A2P023: Biomassnoyesnonoyesyesno
        A2P023: Biogasnononononoyesno
        A2P023: OtherThe Co-generation is biomass based.
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesnonoyesyes
        A2P024: Energy management systemnoyesyesnoyesyesno
        A2P024: Demand-side managementnoyesyesnoyesyesyes
        A2P024: Smart electricity gridnonoyesnoyesyesno
        A2P024: Thermal Storagenoyesyesnoyesyesno
        A2P024: Electric Storagenoyesyesnoyesyesno
        A2P024: District Heating and Coolingnoyesyesnoyesyesno
        A2P024: Smart metering and demand-responsive control systemsnoyesyesyesyesyesno
        A2P024: P2P – buildingsnononononoyesno
        A2P024: OtherBidirectional electric vehicle (EV) charging (V2G)District Heating
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnononoyesyesyesyes
        A2P025: Energy efficiency measures in historic buildingsnononononoyesno
        A2P025: High-performance new buildingsnoyesyesnonoyesno
        A2P025: Smart Public infrastructure (e.g. smart lighting)nonoyesnonoyesno
        A2P025: Urban data platformsnonoyesnonoyesno
        A2P025: Mobile applications for citizensnononononoyesno
        A2P025: Building services (HVAC & Lighting)nonoyesnonoyesno
        A2P025: Smart irrigationnononononoyesno
        A2P025: Digital tracking for waste disposalnonoyesnonoyesno
        A2P025: Smart surveillancenonononoyesnono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)nononononoyesno
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonoyesnonoyesno
        A2P026: e-Mobilitynoyesyesnonoyesno
        A2P026: Soft mobility infrastructures and last mile solutionsnonoyesnonoyesno
        A2P026: Car-free areanonoyesnonoyesno
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notesWalkability
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesYesNoYesYes
        A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingPassive house (2 buildings, 4 200 m2, from 2015)Miljöbyggnad silver/guld
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesYesNoNoNo
        A2P029: If yes, please specify and/or enter notesZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC)
        • Promotion of energy communities (REC/CEC),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Smart cities strategies,
        • Urban Renewal Strategies,
        • New development strategies,
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.),
        • National / international city networks addressing sustainable urban development and climate neutrality
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyCity strategy: Net climate neutrality 2030Reduction of 1018000 tons CO2 by 2030
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps
        • Electrification of Heating System based on Heat Pumps,
        • Biogas
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods,
        • Biogas,
        • Hydrogen
        A3P003: OtherNo gas grid in BrunnshögNA
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesLocal waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars.Decarbonize part of Aalborg city as a way of working incrementally towards being a zero-emission city.
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviourNeed to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection.- Stakeholder engagement; - Focus on implementing renewable energy production where possible; - Rretrofitting and energy optimization of existing buildings.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • PPP models,
        • Other
        • Life Cycle Cost,
        • Circular economy models
        • Innovative business models,
        • Life Cycle Cost,
        • Circular economy models,
        • Demand management Living Lab,
        • Local trading,
        • Existing incentives
        A3P006: OtherAttractivenes
        A3P007: Social models
        A3P007: Social models
        • Behavioural Change / End-users engagement,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
        • Other
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Quality of Life,
        • Strategies towards social mix
        • Behavioural Change / End-users engagement,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Policy Forums,
        • Citizen/owner involvement in planning and maintenance
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen Social Research,
        • Social incentives,
        • Quality of Life,
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement
        A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning,
        • District Energy plans
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • District Energy plans,
        • City Vision 2050,
        • SECAP Updates,
        • Building / district Certification
        • District Energy plans
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Low Emission Zone
        • Net zero carbon footprint,
        • Greening strategies,
        • Sustainable Urban drainage systems (SUDS),
        • Nature Based Solutions (NBS)
        • Energy Neutral
        • Energy Neutral,
        • Net zero carbon footprint
        • Energy Neutral,
        • Life Cycle approach
        • Carbon-free
        A3P009: Other
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspectsCampus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.The municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions.Current energy tariffs disincentivize both individual and collective PV systems – meaning energy communities are not economically feasible, housing associations and public buildings struggle with finding a secure RoI for solar panels, and citizens and local industry lack an incentive to install solar panels on their ownRegulatory sandbox
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionThe biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods.Refurbishment of social housing. The refurbishment complies with EnergieSprong specifications. This implies a performance of E=0 over 25 years.The large scale provides interesting opportunities for both urban development and strategic energy planning; the diverse mix of buildings and functions also allow for interesting discussions regarding PEDs. Another interesting facet is that the district heating grid is almost fully supplied by waste heat.Functional PED
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentIn line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.The aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development.Refurbishment of social housingThe area has an interesting history of development and has recently undergone several urban improvements. This is coupled with a strong local network of business owners and other stakeholders, all with an interest in developing the area in the best way possible. This made for an interesting case from a planning perspective to investigate how this network would pick up on the concept of PED and whether they could see any potential utility in relation to their everyday experiences.Brown field development of a former industrial neighbourhood into a low-carbon, smart Positive Energy District with mixed uses.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaRuralUrban areaSuburban areaSuburban areaUrban areaUrban area
        B1P004: Type of district
        B2P004: Type of district
        • New construction,
        • Renovation
        • New construction
        • Renovation
        • Renovation
        • New construction
        • Renovation
        B1P005: Case Study Context
        B1P005: Case Study Context
        • Retrofitting Area
        • New Development
        • Retrofitting Area
        • Retrofitting Area
        • New Development
        • Retrofitting Area
        B1P006: Year of construction
        B1P006: Year of construction1958
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential016.931
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential18000
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential2000
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential22000
        B1P011: Population density before intervention
        B1P011: Population density before intervention0000000
        B1P012: Population density after intervention
        B1P012: Population density after intervention000.0266666666666670000
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnononoyesnonoyes
        B1P013 - Residential: Specify the sqm [m²]
        B1P013: Officenonoyesnononono
        B1P013 - Office: Specify the sqm [m²]60000
        B1P013: Industry and Utilitynononononoyesno
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnonononononono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnonononononono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasnonoyesnononono
        B1P013 - Natural areas: Specify the sqm [m²]2000000
        B1P013: Recreationalnonononononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnonononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernonoyesnononono
        B1P013 - Other: Specify the sqm [m²]Outdoor parking: 100000
        B1P014: Building and Land Use after intervention
        B1P014: Residentialnonoyesyesnoyesyes
        B1P014 - Residential: Specify the sqm [m²]600000
        B1P014: Officenonoyesnonoyesno
        B1P014 - Office: Specify the sqm [m²]650000
        B1P014: Industry and Utilitynonononononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnononononoyesno
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnonoyesnononono
        B1P014 - Institutional: Specify the sqm [m²]50000
        B1P014: Natural areasnonononononono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnonoyesnonoyesno
        B1P014 - Recreational: Specify the sqm [m²]400000
        B1P014: Dismissed areasnonononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernonononononono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definitionAn ongoing process and dialogue with local stakeholders to determine the future development of the area.
        B2P002: Installation life time
        B2P002: Installation life timeNo new installation will be made throughout the project. Rather the project will attempt to establish a local PED network with the aim of empowering the stakeholders to better engage with sustainable technologies.
        B2P003: Scale of action
        B2P003: ScaleDistrict
        B2P004: Operator of the installation
        B2P004: Operator of the installationKristian Olesen
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materialsReplication is primarily focused on the establishment of a local network with an interest in and understanding of PED.
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?No
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Civic
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabResearch center/University
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        • Academia,
        • Private
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production5 - Very important5 - Very important5 - Very important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant
        C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P001: Storage systems and E-mobility market penetration5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
        C1P001: Decreasing costs of innovative materials4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
        C1P001: The ability to predict Multiple Benefits1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
        C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
        C1P001: Social acceptance (top-down)5 - Very important4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
        C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
        C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
        C1P001: Availability of RES on site (Local RES)5 - Very important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need4 - Important3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
        C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
        C1P002: Economic growth need2 - Slightly important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
        C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
        C1P002: Energy autonomy/independence5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
        C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
        C1P003: Lack of public participation3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
        C1P003:Long and complex procedures for authorization of project activities5 - Very important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
        C1P003: Complicated and non-comprehensive public procurement4 - Important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
        C1P003: Fragmented and or complex ownership structure3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
        C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
        C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
        C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P005: Regulatory instability3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P005: Non-effective regulations4 - Important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
        C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
        C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
        C1P005: Insufficient or insecure financial incentives4 - Important4 - Important5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
        C1P005: Shortage of proven and tested solutions and examples3 - Moderately important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriers?
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel4 - Important3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
        C1P007: Deficient planning3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
        C1P007: Retrofitting work in dwellings in occupied state4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
        C1P007: Lack of well-defined process4 - Important3 - Moderately important4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
        C1P007: Inaccuracy in energy modelling and simulation4 - Important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
        C1P007: Lack/cost of computational scalability4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
        C1P007: Grid congestion, grid instability4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
        C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
        C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
        C1P007: Any other Thecnical BARRIER5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
        C1P008: Social and Cultural barriers
        C1P008: Inertia4 - Important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
        C1P008: Lack of values and interest in energy optimization measurements5 - Very important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
        C1P008: Low acceptance of new projects and technologies5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P008: Difficulty of finding and engaging relevant actors5 - Very important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
        C1P008: Lack of trust beyond social network4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Rebound effect4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
        C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
        C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
        C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant4 - Important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important4 - Important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
        C1P009: Lack of awareness among authorities4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
        C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant
        C1P009: High costs of design, material, construction, and installation5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
        C1P010: Financial barriers
        C1P010: Hidden costs5 - Very important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
        C1P010: Insufficient external financial support and funding for project activities5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
        C1P010: Economic crisis1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
        C1P010: Risk and uncertainty5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant
        C1P010: Lack of consolidated and tested business models5 - Very important4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
        C1P010: Limited access to capital and cost disincentives4 - Important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
        C1P011: Energy price distortion1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
        C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading
        • Planning/leading,
        • Monitoring/operation/management
        • Monitoring/operation/management
        C1P012: Research & Innovation
        • Monitoring/operation/management
        • Design/demand aggregation
        • Monitoring/operation/management
        C1P012: Financial/Funding
        • Construction/implementation
        • Construction/implementation
        C1P012: Analyst, ICT and Big Data
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Construction/implementation
        C1P012: Business process management
        • Planning/leading
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: Urban Services providers
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Real Estate developers
        • Planning/leading,
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Design/Construction companies
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: End‐users/Occupants/Energy Citizens
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Design/demand aggregation
        C1P012: Social/Civil Society/NGOs
        • None
        • None
        C1P012: Industry/SME/eCommerce
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Construction/implementation
        C1P012: Other
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)