Filters:
NameProjectTypeCompare
Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna/16. District HeatCOOP PED Relevant Case Study Compare
Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Uncompare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Uncompare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Uncompare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Uncompare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Oulu, Kaukovainio
Aveiro, Portugal
Utrecht, the Netherlands (District of Kanaleneiland)
Uden, Loopkantstraat
Riga, Ķīpsala, RTU smart student city
Innsbruck, Campagne-Areal
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityOulu, KaukovainioAveiro, PortugalUtrecht, the Netherlands (District of Kanaleneiland)Uden, LoopkantstraatRiga, Ķīpsala, RTU smart student cityInnsbruck, Campagne-Areal
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnononoyesno
PED relevant case studyyesnoyesyesyesnoyes
PED Lab.nonononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyesyes
Annual energy surplusnonononoyesnono
Energy communityyesnoyesyesnoyesno
Circularitynoyesnonononono
Air quality and urban comfortyesnononononono
Electrificationyesyesyesyesyesnono
Net-zero energy costnonononononono
Net-zero emissionnonononononoyes
Self-sufficiency (energy autonomous)nononononoyesno
Maximise self-sufficiencynononononoyesno
Othernonononononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseIn operationPlanning PhasePlanning PhaseIn operationPlanning PhaseCompleted
A1P006: Start Date
A1P006: Start date12/2311/2306/1701/2404/16
A1P007: End Date
A1P007: End date11/2611/2605/2312/2604/22
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
        • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
        • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
        • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
        • https://www.synikia.eu/no/bibliotek/
        A1P011: Geographic coordinates
        X Coordinate (longitude):23.81458825.517595084093507-8.65955.08755.619124.0816833911.424346738140256
        Y Coordinate (latitude):38.07734964.9928809817313240.635352.065351.660656.9524595647.271470786729104
        A1P012: Country
        A1P012: CountryGreeceFinlandPortugalNetherlandsNetherlandsLatviaAustria
        A1P013: City
        A1P013: CityMunicipality of KifissiaOuluAlveiro (Aradas)Utrecht (Kanaleneiland)UdenRigaInnsbruck
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CsaDfcCsbCfbCfbCfbDfb
        A1P015: District boundary
        A1P015: District boundaryVirtualGeographicGeographicGeographicGeographicGeographic
        OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodRegional (close to virtual)
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:MixedPublicPrivatePrivatePublicMixed
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple Owners
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED61154
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]19700236017000022277
        A1P020: Total ground area
        A1P020: Total ground area [m²]6000089300002910000386011926411351
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area0000112
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenoyesnonoyesnono
        A1P022a: Add the value in EUR if available [EUR]7804440
        A1P022b: Financing - PRIVATE - ESCO schemenonononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernonononononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnonononononono
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingnonoyesyesnonono
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingnonononononono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnoyesnonononono
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernonononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnoyesnononoyesno
        A1P022i: Add the value in EUR if available [EUR]7500000
        A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononoyes
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: Other
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Positive externalities,
        • Boosting local and sustainable production
        • Boosting local businesses,
        • Boosting local and sustainable production
        • Job creation,
        • Other
        A1P023: OtherDeveloping and demonstrating new solutionsCreate affordable appartments for the citizens
        A1P024: More comments:
        A1P024: More comments:The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]57804440
        Contact person for general enquiries
        A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaSamuli RinneDr. Gonçalo Homem De Almeida Rodriguez CorreiaDr. Gonçalo Homem De Almeida Rodriguez CorreiaTonje Healey TrulsrudJudith StiekemaGeorgios Dermentzis
        A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamCity of OuluDelft University of TechnologyDelft University of TechnologyNorwegian University of Science and Technology (NTNU)OASCUniversity of Innsbruck
        A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityOtherResearch Center / University
        A1P028: Othernot for profit private organisation
        A1P029: Emailgiavasoglou@kifissia.grsamuli.rinne@ouka.fig.correia@tudelft.nlg.correia@tudelft.nltonje.h.trulsrud@ntnu.nojudith@oascities.orgGeorgios.Dermentzis@uibk.ac.at
        Contact person for other special topics
        A1P030: NameStavros Zapantis - vice mayorSamuli RinneQiaochu FanQiaochu Fan
        A1P031: Emailstavros.zapantis@gmail.comsamuli.rinne@ouka.fiq.fan-1@tudelft.nlq.fan-1@tudelft.nl
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Water use,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Waste management,
        • Indoor air quality,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy production,
        • Indoor air quality
        A2P001: Other
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsDifferent kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.Energy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materialsA suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.The buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed.
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoYesNoNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceNoNoYesYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoNoYesNo
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationNot included. However, there is a charging place for a shared EV in one building.not includedThe university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.10.14880000.39
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.20.10950000.655
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]0
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesyesnonoyesnoyes
        A2P011: PV - specify production in GWh/annum [GWh/annum]0.10.0580.42
        A2P011: Windnononononoyesno
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydrononononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnonononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnonononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnononononoyesno
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernonononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnonononoyesnono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnonononononono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatnononononoyesno
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPnoyesnonononono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.2
        A2P012: Biomass_peat_heatnonononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnonononononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnonononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernonononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notesHeat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)*Annual energy use below is presentedin primary energy consumptionConventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]2.30.1940.96
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]0.0368-2
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnononononoyesno
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnonononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnonononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernonononononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnoyesnonononono
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
        A2P018: Windnoyesnonononono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydronoyesnonononono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnoyesnonononono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnoyesnonononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnonononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernonononononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnonononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnonononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnoyesnonononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
        A2P019: Waste heat+HPnonononononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnonononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnonononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnonononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernonononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary03.285714285714300000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]0-0.00043
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & SecurityPersonal Safety
        A2P022: HealthEncouraging a healthy lifestyleHealthy communityindoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold.
        A2P022: Education
        A2P022: MobilityModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV chargingImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districtsImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districtsSustainable mobility
        A2P022: EnergyFinal energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reductionTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stabilityTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stabilityNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emissionSpace heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production.
        A2P022: Water
        A2P022: Economic developmentTotal investments, Payback time, Economic value of savingsDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resilienceDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resiliencecapital costs, operational cots, overall economic performance (5 KPIs)
        A2P022: Housing and CommunityDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy povertydemographic composition, diverse community, social cohesion
        A2P022: WasteRecycling rate
        A2P022: OtherSmart Cities strategies, Quality of open dataSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsnoyesyesyesyesnoyes
        A2P023: Solar thermal collectorsnonononononono
        A2P023: Wind Turbinesnonoyesyesnonono
        A2P023: Geothermal energy systemnonononoyesnono
        A2P023: Waste heat recoverynoyesnonononono
        A2P023: Waste to energynonononononono
        A2P023: Polygenerationnonononononono
        A2P023: Co-generationnoyesnonononono
        A2P023: Heat Pumpnoyesnonoyesnoyes
        A2P023: Hydrogennonononononono
        A2P023: Hydropower plantnonononononono
        A2P023: Biomassnoyesnonononono
        A2P023: Biogasnonononononono
        A2P023: Other
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)noyesnononoyesno
        A2P024: Energy management systemnoyesyesyesyesyesno
        A2P024: Demand-side managementnonoyesnoyesyesno
        A2P024: Smart electricity gridnonoyesyesnoyesno
        A2P024: Thermal Storagenoyesnononoyesyes
        A2P024: Electric Storagenonoyesyesnoyesno
        A2P024: District Heating and Coolingnoyesnononoyesyes
        A2P024: Smart metering and demand-responsive control systemsnonononoyesyesno
        A2P024: P2P – buildingsnonononononoyes
        A2P024: Other
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnoyesyesyesnonono
        A2P025: Energy efficiency measures in historic buildingsnonononononono
        A2P025: High-performance new buildingsnoyesnonoyesnoyes
        A2P025: Smart Public infrastructure (e.g. smart lighting)nonoyesyesnonono
        A2P025: Urban data platformsnoyesyesyesnoyesno
        A2P025: Mobile applications for citizensnononononoyesno
        A2P025: Building services (HVAC & Lighting)noyesnonoyesyesyes
        A2P025: Smart irrigationnonononononono
        A2P025: Digital tracking for waste disposalnonononononono
        A2P025: Smart surveillancenonononononono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)noyesyesyesnonono
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesyesyesnonono
        A2P026: e-Mobilitynoyesyesyesnonono
        A2P026: Soft mobility infrastructures and last mile solutionsnoyesnonononono
        A2P026: Car-free areanonononononono
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notes
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesYesNoYes
        A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingThe obligatory buildijng energy classificationEPC = 0, energy neutral buildingTwo buildings are certified "Passive House new build"
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNoNoNo
        A2P029: If yes, please specify and/or enter notes
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC)
        • Smart cities strategies,
        • Urban Renewal Strategies,
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies,
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyCarbon neutrality by 2035
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps,
        • Other
        A3P003: OtherDistrict heating based mainly on heat pumps and renewable sources
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesDeveloping and demonstrating solutions for carbon neutralityThe priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems.
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviourE. g. visualizing energy and water consumption
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Open data business models,
        • Innovative business models,
        • PPP models,
        • Life Cycle Cost,
        • Circular economy models
        • Innovative business models,
        • Local trading,
        • Existing incentives
        • Innovative business models,
        • Local trading,
        • Existing incentives
        • Open data business models,
        • Innovative business models,
        • Demand management Living Lab
        A3P006: Other
        A3P007: Social models
        A3P007: Social models
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen Social Research,
        • Policy Forums,
        • Quality of Life,
        • Strategies towards social mix,
        • Affordability,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Prevention of energy poverty,
        • Digital Inclusion
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Prevention of energy poverty,
        • Digital Inclusion
        • Co-creation / Citizen engagement strategies,
        • Social incentives,
        • Quality of Life
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies
        • Co-creation / Citizen engagement strategies,
        • Social incentives,
        • Affordability,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning,
        • District Energy plans,
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning,
        • District Energy plans
        • Strategic urban planning,
        • District Energy plans
        • Digital twinning and visual 3D models
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral,
        • Net zero carbon footprint
        • Energy Neutral,
        • Low Emission Zone,
        • Nature Based Solutions (NBS)
        • Energy Neutral,
        • Low Emission Zone,
        • Nature Based Solutions (NBS)
        • Energy Neutral
        • Energy Neutral,
        • Low Emission Zone
        A3P009: Other
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspects
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionThe original idea is that the area produces at least as much it consumes.The demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.ExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.Extremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentDeveloping systems towards carbon neutrality. Also urban renewal.The need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.Expected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.Since it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaSuburban areaSuburban areaUrban areaUrban area
        B1P004: Type of district
        B2P004: Type of district
        • New construction,
        • Renovation
        • New construction
        • New construction
        B1P005: Case Study Context
        B1P005: Case Study Context
        • New Development,
        • Retrofitting Area
        • New Development
        • Re-use / Transformation Area,
        • New Development
        B1P006: Year of construction
        B1P006: Year of construction2022
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential3500
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential3500780
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P011: Population density before intervention
        B1P011: Population density before intervention0000000
        B1P012: Population density after intervention
        B1P012: Population density after intervention00.05833333333333300000.068716412650868
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnoyesnonononono
        B1P013 - Residential: Specify the sqm [m²]
        B1P013: Officenonononononono
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynonononononono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnoyesnonononono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnonononononono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasnoyesnonononono
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnoyesnonononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnonononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernonononononono
        B1P013 - Other: Specify the sqm [m²]
        B1P014: Building and Land Use after intervention
        B1P014: Residentialnoyesnonoyesnoyes
        B1P014 - Residential: Specify the sqm [m²]2394
        B1P014: Officenonononononono
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynonononononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnoyesnonononoyes
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnonononononoyes
        B1P014 - Institutional: Specify the sqm [m²]
        B1P014: Natural areasnoyesnonononono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnoyesnonononoyes
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnonononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernonononononono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definition
        B2P002: Installation life time
        B2P002: Installation life time
        B2P003: Scale of action
        B2P003: Scale
        B2P004: Operator of the installation
        B2P004: Operator of the installation
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED Lab
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production5 - Very important5 - Very important5 - Very important5 - Very important3 - Moderately important5 - Very important1 - Unimportant
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important2 - Slightly important4 - Important4 - Important1 - Unimportant5 - Very important2 - Slightly important
        C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important2 - Slightly important5 - Very important5 - Very important3 - Moderately important5 - Very important3 - Moderately important
        C1P001: Storage systems and E-mobility market penetration1 - Unimportant5 - Very important5 - Very important4 - Important4 - Important2 - Slightly important
        C1P001: Decreasing costs of innovative materials4 - Important3 - Moderately important3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant
        C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important3 - Moderately important5 - Very important5 - Very important3 - Moderately important5 - Very important1 - Unimportant
        C1P001: The ability to predict Multiple Benefits4 - Important4 - Important4 - Important3 - Moderately important5 - Very important3 - Moderately important
        C1P001: The ability to predict the distribution of benefits and impacts2 - Slightly important4 - Important4 - Important3 - Moderately important5 - Very important3 - Moderately important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important3 - Moderately important5 - Very important5 - Very important3 - Moderately important5 - Very important2 - Slightly important
        C1P001: Social acceptance (top-down)5 - Very important5 - Very important4 - Important4 - Important5 - Very important4 - Important4 - Important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important2 - Slightly important5 - Very important5 - Very important4 - Important5 - Very important3 - Moderately important
        C1P001: Presence of integrated urban strategies and plans3 - Moderately important4 - Important4 - Important4 - Important3 - Moderately important4 - Important4 - Important
        C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important4 - Important4 - Important4 - Important5 - Very important5 - Very important4 - Important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important3 - Moderately important5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important
        C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important5 - Very important5 - Very important4 - Important3 - Moderately important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important4 - Important5 - Very important5 - Very important4 - Important4 - Important3 - Moderately important
        C1P001: Any other UNLOCKING FACTORS2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need4 - Important1 - Unimportant4 - Important4 - Important5 - Very important5 - Very important5 - Very important
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important5 - Very important5 - Very important5 - Very important4 - Important4 - Important
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important4 - Important5 - Very important
        C1P002: Urban re-development of existing built environment3 - Moderately important5 - Very important4 - Important4 - Important4 - Important4 - Important3 - Moderately important
        C1P002: Economic growth need2 - Slightly important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important3 - Moderately important5 - Very important5 - Very important5 - Very important4 - Important3 - Moderately important
        C1P002: Territorial and market attractiveness2 - Slightly important5 - Very important4 - Important4 - Important2 - Slightly important4 - Important4 - Important
        C1P002: Energy autonomy/independence5 - Very important3 - Moderately important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important2 - Slightly important4 - Important4 - Important1 - Unimportant4 - Important2 - Slightly important
        C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important2 - Slightly important
        C1P003: Lack of public participation3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P003:Long and complex procedures for authorization of project activities5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P003: Complicated and non-comprehensive public procurement4 - Important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P003: Fragmented and or complex ownership structure3 - Moderately important2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P003: Lack of internal capacities to support energy transition3 - Moderately important2 - Slightly important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies4 - Important2 - Slightly important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important3 - Moderately important5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant
        C1P005: Regulatory instability3 - Moderately important2 - Slightly important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P005: Non-effective regulations4 - Important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant
        C1P005: Building code and land-use planning hindering innovative technologies4 - Important2 - Slightly important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P005: Insufficient or insecure financial incentives4 - Important2 - Slightly important5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P005: Shortage of proven and tested solutions and examples2 - Slightly important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriersUrban area very high buildings (and apartment) density and thus, less available space for renewable sources.
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel4 - Important2 - Slightly important4 - Important4 - Important1 - Unimportant4 - Important2 - Slightly important
        C1P007: Deficient planning3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant
        C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Lack of well-defined process4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant
        C1P007: Inaccuracy in energy modelling and simulation4 - Important3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P007: Grid congestion, grid instability4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant
        C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P007: Difficult definition of system boundaries3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia4 - Important2 - Slightly important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P008: Lack of values and interest in energy optimization measurements5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P008: Low acceptance of new projects and technologies5 - Very important2 - Slightly important5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant
        C1P008: Difficulty of finding and engaging relevant actors5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P008: Lack of trust beyond social network4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P008: Rebound effect4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P008: Hostile or passive attitude towards environmentalism5 - Very important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers2 - Slightly important5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts2 - Slightly important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P009: Lack of awareness among authorities1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P009: High costs of design, material, construction, and installation3 - Moderately important5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
        C1P010: Insufficient external financial support and funding for project activities2 - Slightly important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P010: Economic crisis1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
        C1P010: Risk and uncertainty3 - Moderately important4 - Important4 - Important5 - Very important3 - Moderately important1 - Unimportant
        C1P010: Lack of consolidated and tested business models3 - Moderately important5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P010: Limited access to capital and cost disincentives2 - Slightly important5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives2 - Slightly important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P011: Energy price distortion2 - Slightly important5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
        C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation
        • Planning/leading
        • Planning/leading
        C1P012: Research & Innovation
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        C1P012: Financial/Funding
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Planning/leading,
        • Construction/implementation
        C1P012: Analyst, ICT and Big Data
        • Monitoring/operation/management
        • Planning/leading,
        • Monitoring/operation/management
        • Monitoring/operation/management
        C1P012: Business process management
        • Planning/leading,
        • Monitoring/operation/management
        • Monitoring/operation/management
        C1P012: Urban Services providers
        • Planning/leading
        • Planning/leading,
        • Monitoring/operation/management
        • Construction/implementation
        C1P012: Real Estate developers
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        • Construction/implementation
        • Planning/leading
        C1P012: Design/Construction companies
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: End‐users/Occupants/Energy Citizens
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation
        C1P012: Social/Civil Society/NGOs
        • Monitoring/operation/management
        • Design/demand aggregation
        • Planning/leading
        C1P012: Industry/SME/eCommerce
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Other
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)