Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Uncompare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Uncompare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Oulu, Kaukovainio
Schönbühel-Aggsbach, Schönbühel an der Donau
Riga, Ķīpsala, RTU smart student city
Oslo, Verksbyen
Trondheim, Svartlamon
Maia, Sobreiro Social Housing
Évora, Portugal
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityOulu, KaukovainioSchönbühel-Aggsbach, Schönbühel an der DonauRiga, Ķīpsala, RTU smart student cityOslo, VerksbyenTrondheim, SvartlamonMaia, Sobreiro Social HousingÉvora, Portugal
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnoyesyesnonono
PED relevant case studyyesnoyesnonononoyes
PED Lab.nononononoyesyesyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyesyesno
Annual energy surplusnonononoyesnonoyes
Energy communityyesnoyesyesnoyesnoyes
Circularitynoyesnononononono
Air quality and urban comfortyesnononoyesnonono
Electrificationyesyesnononononono
Net-zero energy costnonoyesnonononono
Net-zero emissionnonononoyesnonono
Self-sufficiency (energy autonomous)nononoyesnononono
Maximise self-sufficiencynonoyesyesnonoyesno
Othernononononononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseIn operationImplementation PhasePlanning PhaseImplementation PhasePlanning PhasePlanning PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date01/2407/1811/2410/2110/19
A1P007: End Date
A1P007: End date12/2608/2403/2610/2409/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
          A1P011: Geographic coordinates
          X Coordinate (longitude):23.81458825.51759508409350715.396924.0816833910.98617335443299210.42-8.373557-7.909377
          Y Coordinate (latitude):38.07734964.9928809817313248.275256.9524595659.2242971664204663.436341.13580438.570804
          A1P012: Country
          A1P012: CountryGreeceFinlandAustriaLatviaNorwayNorwayPortugalPortugal
          A1P013: City
          A1P013: CityMunicipality of KifissiaOuluSchönbühel an der DonauRigaFredrikstadTrondheimMaiaÉvora
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).CsaDfcDfbCfbCfbCfbCsbCsa
          A1P015: District boundary
          A1P015: District boundaryVirtualGeographicGeographicGeographicVirtualVirtualGeographic
          OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodRegional (close to virtual)
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:MixedPrivatePublicPrivatePrivatePublicMixed
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersMultiple Owners
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED6015222
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]197004771700003550
          A1P020: Total ground area
          A1P020: Total ground area [m²]6000024501192643200
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area00010000
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estatenoyesyesnoyesnonono
          A1P022a: Add the value in EUR if available [EUR]
          A1P022b: Financing - PRIVATE - ESCO schemenononononononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Othernonononononoyesno
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnononononononono
          A1P022d: Add the value in EUR if available [EUR]
          A1P022e: Financing - PUBLIC - National fundingnonoyesnonoyesyesno
          A1P022e: Add the value in EUR if available [EUR]
          A1P022f: Financing - PUBLIC - Regional fundingnonoyesnononoyesno
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingnoyesnononononono
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernononononononono
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUnoyesnoyesnonoyesyes
          A1P022i: Add the value in EUR if available [EUR]750000019998275
          A1P022j: Financing - RESEARCH FUNDING - Nationalnononononononono
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: Other
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Positive externalities,
          • Boosting local and sustainable production
          • Boosting local businesses,
          • Boosting local and sustainable production
          • Positive externalities,
          • Boosting local and sustainable production
          A1P023: OtherDeveloping and demonstrating new solutions
          A1P024: More comments:
          A1P024: More comments:The total development consists of more than 1500 dwellings, a kindergarten, a school, and commercial buildings. Two of the residential blocks are included as demonstration projects in syn.ikia. The two blocks have 20 dwellings in each and are 6 stories high.
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]50.02
          Contact person for general enquiries
          A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaSamuli RinneGhazal EtminanJudith StiekemaTonje Healey TrulsrudTatiana González Grandón; Raymundo E. Torres-OlguinAdelina RodriguesJoão Bravo Dias
          A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamCity of OuluGhazal.Etminan@ait.ac.atOASCNorwegian University of Science and technology (NTNU)NTNUMaia Municipality (CM Maia) – Energy and Mobility divisionEDP Labelec
          A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityOtherResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesSME / Industry
          A1P028: Othernot for profit private organisation
          A1P029: Emailgiavasoglou@kifissia.grsamuli.rinne@ouka.fiGhazal.Etminan@ait.ac.atjudith@oascities.orgtonje.h.trulsrud@ntnu.notatiana.c.g.grandon@ntnu.nodscm.adelina@cm-maia.ptjoao.bravodias@edp.pt
          Contact person for other special topics
          A1P030: NameStavros Zapantis - vice mayorSamuli RinneRaymundo E. Torres-OlguinCarolina Gonçalves (AdEPorto)
          A1P031: Emailstavros.zapantis@gmail.comsamuli.rinne@ouka.firaymundo.torres-olguin@sintef.nocarolinagoncalves@adeporto.eu
          Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy production
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Water use,
          • Indoor air quality
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies,
          • Indoor air quality
          • Energy flexibility,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Waste management,
          • Construction materials
          A2P001: Other
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fieldsDifferent kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.Energy modelingA suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.Energy efficiency: energy-efficient buildings that comply with the Norwegian Passive House standard. Energy Flexibility: sharing of PV energy between the dwellings Energy production: BIPV on the roof and facades, and a ground source heat pump for thermal energy. E-mobility: EV charging Urban comfort: a large green park in the neighbourhood with a small lake and recreational areas Digital technologies: Smart Home Systems for lighting, heating and ventilation Indoor air quality: balanced ventilationEnergy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000NoNoNoYesNoNo
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceNoYesYesNoYesYes
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceNoNoYesNoNoYes
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculationNot included. However, there is a charging place for a shared EV in one building.The university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.10.06680000.1614
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.20.01250000.05390
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]0
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]9
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVyesyesyesnoyesnoyesno
          A2P011: PV - specify production in GWh/annum [GWh/annum]0.10.18
          A2P011: Windnononoyesnononono
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydronononononononono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_elnononononononono
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_peat_elnononononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnononoyesnononono
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
          A2P011: Othernononononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalnononononononono
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Solar Thermalnonononononoyesno
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_heatnononoyesnononono
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: Waste heat+HPnoyesnononononono
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.2
          A2P012: Biomass_peat_heatnononononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thnononononononono
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_firewood_thnononononononono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernononononononono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notesHeat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)Conventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]2.30.079
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]0.0011
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnononoyesnononono
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Coalnononononononono
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Oilnononononononono
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Othernononononononono
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnoyesyesnonononono
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
          A2P018: Windnoyesyesnonononono
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydronoyesyesnonononono
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnoyesyesnonononono
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnoyesnononononono
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnononononononono
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernononononononono
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnononononononono
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnononononononono
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnoyesnononononono
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
          A2P019: Waste heat+HPnononononononono
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnononononononono
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnononononononono
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnonoyesnonononono
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernononononononono
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary03.2857142857143000000
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]04-6.035
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & SecurityPersonal Safety
          A2P022: HealthEncouraging a healthy lifestyleHealthy community + Indoor Evironmental Quality (indoor air quality, thermal comfort, lighting and visual comfort)
          A2P022: Education
          A2P022: MobilityModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV chargingSustainable mobility
          A2P022: EnergyFinal energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reductionEnergy and environmental performance (non-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/ self-consumption, net energy/net power. peak delivered(peak exported power, connection capacity credit, total greenhouse gas emissionsYes
          A2P022: Water
          A2P022: Economic developmentTotal investments, Payback time, Economic value of savingsEconomic Performance: capital costs, operational costs, overall performance
          A2P022: Housing and CommunityDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy povertySpecify the associated KPIsdemopraphic composiiton, diverse community, social cohesion access to amenities, access to services, afordability of energy, affordability of shousing, living conditions, universal design, energy consciousness
          A2P022: WasteRecycling rate
          A2P022: OtherSmart Cities strategies, Quality of open dataSmartness and Flexibility
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsnoyesyesnoyesyesyesyes
          A2P023: Solar thermal collectorsnonononononoyesyes
          A2P023: Wind Turbinesnononononononono
          A2P023: Geothermal energy systemnonononoyesnonono
          A2P023: Waste heat recoverynoyesnononononono
          A2P023: Waste to energynononononononono
          A2P023: Polygenerationnononononononono
          A2P023: Co-generationnoyesnononononono
          A2P023: Heat Pumpnoyesyesnoyesnoyesno
          A2P023: Hydrogennononononononono
          A2P023: Hydropower plantnononononononono
          A2P023: Biomassnoyesnononononono
          A2P023: Biogasnononononononono
          A2P023: OtherBatteries
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)noyesnoyesyesyesyesyes
          A2P024: Energy management systemnoyesyesyesyesyesyesyes
          A2P024: Demand-side managementnononoyesyesnonono
          A2P024: Smart electricity gridnononoyesnononoyes
          A2P024: Thermal Storagenoyesnoyesnononoyes
          A2P024: Electric Storagenononoyesnonoyesyes
          A2P024: District Heating and Coolingnoyesnoyesnononono
          A2P024: Smart metering and demand-responsive control systemsnononoyesyesnoyesyes
          A2P024: P2P – buildingsnonoyesnonoyesnoyes
          A2P024: Other
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnoyesyesnononoyesno
          A2P025: Energy efficiency measures in historic buildingsnonoyesnonononoyes
          A2P025: High-performance new buildingsnoyesnonoyesnonono
          A2P025: Smart Public infrastructure (e.g. smart lighting)nononononoyesyesno
          A2P025: Urban data platformsnoyesnoyesnoyesnoyes
          A2P025: Mobile applications for citizensnononoyesnononoyes
          A2P025: Building services (HVAC & Lighting)noyesnoyesyesnoyesyes
          A2P025: Smart irrigationnononononononono
          A2P025: Digital tracking for waste disposalnonononononoyesyes
          A2P025: Smart surveillancenononononononoyes
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)noyesnonononoyesno
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesnononononono
          A2P026: e-Mobilitynoyesnonononoyesyes
          A2P026: Soft mobility infrastructures and last mile solutionsnoyesnononononoyes
          A2P026: Car-free areanononononononono
          A2P026: Other
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notes
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesYesYesNoYesYesNo
          A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingThe obligatory buildijng energy classificationNS3700 Norwegian Passive HouseThe Municipal Buildings have an energy certificate, according to the Portuguese legislation.
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesNoNoNoNoNo
          A2P029: If yes, please specify and/or enter notes
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC)
          • Smart cities strategies,
          • Urban Renewal Strategies,
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Promotion of energy communities (REC/CEC)
          • Smart cities strategies,
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Urban Renewal Strategies,
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategyCarbon neutrality by 2035
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          • Other
          A3P003: OtherAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and prioritiesDeveloping and demonstrating solutions for carbon neutrality
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviourE. g. visualizing energy and water consumption
          A3P006: Economic strategies
          A3P006: Economic strategies
          • Open data business models,
          • Innovative business models,
          • PPP models,
          • Life Cycle Cost,
          • Circular economy models
          • Local trading,
          • Existing incentives
          • Open data business models,
          • Innovative business models,
          • Demand management Living Lab
          • Local trading,
          • Existing incentives
          • Innovative business models,
          • PPP models,
          • Existing incentives
          A3P006: Other
          A3P007: Social models
          A3P007: Social models
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Citizen Social Research,
          • Policy Forums,
          • Quality of Life,
          • Strategies towards social mix,
          • Affordability,
          • Prevention of energy poverty,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Quality of Life,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies
          • Co-creation / Citizen engagement strategies
          • Co-creation / Citizen engagement strategies,
          • Prevention of energy poverty,
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          A3P007: Other
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • Strategic urban planning,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates
          • Digital twinning and visual 3D models
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Energy Neutral,
          • Net zero carbon footprint
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Carbon-free
          • Energy Neutral
          • Low Emission Zone
          • Energy Neutral,
          • Net zero carbon footprint,
          • Pollutants Reduction
          A3P009: Other
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspects
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionThe original idea is that the area produces at least as much it consumes.ExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.The case study follows the concept of syn.ikia with sustainable plus energy neighbourhoods (SPEN) and aims to reach a plus energy balance based on EPB uses on an annual basis.The PED main objective is to achieve the energy transition while preserving cultural heritage and improving citizen’s quality of life.
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentDeveloping systems towards carbon neutrality. Also urban renewal.Expected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.The developers call their concept for Future Living, where the neighbourhood consist of highly energy-efficient buildings, is supplied with renewable energy onsite and includes green areas for well-being.POCITYF brings together eight cities (Lightouse and Fellow cities), all having cultural heritage areas in their territory. All are intrinsically motivated to participate in the necessary energy transition not only for their conventional city districts of mixed-used, but also for districts with individually specificities as those belonging in their cultural heritage, which at the moment may be acting as barriers for their further environmental sustainability, but after POCITYF will be acting as a promising building retrofits roadmap for similar and other EU cities.
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaSuburban areaRurbanUrban areaSuburban areaUrban area
          B1P004: Type of district
          B2P004: Type of district
          • New construction,
          • Renovation
          • Renovation
          • New construction
          • Renovation
          B1P005: Case Study Context
          B1P005: Case Study Context
          • New Development,
          • Retrofitting Area
          • Retrofitting Area,
          • Preservation Area
          • New Development
          • Preservation Area
          B1P006: Year of construction
          B1P006: Year of construction
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential3500
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential3500
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential
          B1P011: Population density before intervention
          B1P011: Population density before intervention00000000
          B1P012: Population density after intervention
          B1P012: Population density after intervention00.058333333333333000000
          B1P013: Building and Land Use before intervention
          B1P013: Residentialnoyesyesnonononono
          B1P013 - Residential: Specify the sqm [m²]
          B1P013: Officenonoyesnonononono
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilitynonononoyesnonono
          B1P013 - Industry and Utility: Specify the sqm [m²]whole site was used for idustry and excavation
          B1P013: Commercialnoyesnononononono
          B1P013 - Commercial: Specify the sqm [m²]
          B1P013: Institutionalnononononononono
          B1P013 - Institutional: Specify the sqm [m²]
          B1P013: Natural areasnoyesnononononono
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnoyesnononononono
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasnononononononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernononononononono
          B1P013 - Other: Specify the sqm [m²]
          B1P014: Building and Land Use after intervention
          B1P014: Residentialnoyesyesnoyesnonono
          B1P014 - Residential: Specify the sqm [m²]
          B1P014: Officenonoyesnonononono
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynononononononono
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialnoyesnononononono
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnononononononono
          B1P014 - Institutional: Specify the sqm [m²]
          B1P014: Natural areasnoyesnononononono
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalnoyesnononononono
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnononononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernononononononono
          B1P014 - Other: Specify the sqm [m²]
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definition
          B2P002: Installation life time
          B2P002: Installation life timePermanent installation
          B2P003: Scale of action
          B2P003: ScaleVirtualDistrict
          B2P004: Operator of the installation
          B2P004: Operator of the installationCM Maia, IPMAIA, NEW, AdEP.
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?No
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          • Strategic
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED LabMunicipality
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          • Academia,
          • Private,
          • Industrial,
          • Citizens, public, NGO,
          • Other
          B2P009: OtherEnergy Agency
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activities
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          • Buildings,
          • Demand-side management,
          • Prosumers,
          • Renewable generation,
          • Energy storage,
          • Efficiency measures,
          • Lighting,
          • E-mobility,
          • Information and Communication Technologies (ICT),
          • Ambient measures,
          • Social interactions
          • Buildings,
          • Demand-side management,
          • Prosumers,
          • Renewable generation,
          • Energy storage,
          • Energy networks,
          • Waste management,
          • E-mobility,
          • Social interactions,
          • Circular economy models
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          • Monitoring and evaluation infrastructure,
          • Tools, spaces, events for testing and validation
          • Monitoring and evaluation infrastructure,
          • Tools for prototyping and modelling,
          • Tools, spaces, events for testing and validation
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          • Execution plan,
          • Available data,
          • Type of measured data
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          • Energy,
          • Environmental,
          • Social,
          • Economical / Financial
          • Energy
          B2P016: Execution of operations
          B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
          B2P017: Capacities
          B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
          B2P019: Available tools
          B2P019: Available tools
          • Energy modelling,
          • Social models,
          • Business and financial models,
          • Fundraising and accessing resources,
          • Matching actors
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibility
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production5 - Very important5 - Very important4 - Important5 - Very important5 - Very important3 - Moderately important4 - Important4 - Important
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important2 - Slightly important2 - Slightly important5 - Very important4 - Important1 - Unimportant4 - Important3 - Moderately important
          C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important2 - Slightly important5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important
          C1P001: Storage systems and E-mobility market penetration1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important4 - Important4 - Important
          C1P001: Decreasing costs of innovative materials4 - Important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
          C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important3 - Moderately important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important4 - Important
          C1P001: The ability to predict Multiple Benefits4 - Important2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important4 - Important2 - Slightly important
          C1P001: The ability to predict the distribution of benefits and impacts2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant4 - Important4 - Important3 - Moderately important
          C1P001: Social acceptance (top-down)5 - Very important5 - Very important3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important4 - Important
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important2 - Slightly important5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important4 - Important
          C1P001: Presence of integrated urban strategies and plans3 - Moderately important4 - Important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important5 - Very important5 - Very important
          C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important4 - Important5 - Very important
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important4 - Important
          C1P001: Availability of RES on site (Local RES)4 - Important1 - Unimportant4 - Important5 - Very important4 - Important4 - Important3 - Moderately important
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important4 - Important
          C1P001: Any other UNLOCKING FACTORS2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS (if any)
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important5 - Very important5 - Very important
          C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important5 - Very important4 - Important5 - Very important4 - Important4 - Important4 - Important
          C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant
          C1P002: Urban re-development of existing built environment3 - Moderately important5 - Very important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important
          C1P002: Economic growth need2 - Slightly important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important4 - Important4 - Important
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important4 - Important3 - Moderately important
          C1P002: Territorial and market attractiveness2 - Slightly important5 - Very important3 - Moderately important4 - Important5 - Very important4 - Important4 - Important3 - Moderately important
          C1P002: Energy autonomy/independence5 - Very important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important4 - Important3 - Moderately important
          C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR (if any)
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important
          C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important3 - Moderately important
          C1P003: Lack of public participation3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important
          C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important
          C1P003:Long and complex procedures for authorization of project activities5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important5 - Very important
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
          C1P003: Complicated and non-comprehensive public procurement4 - Important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important
          C1P003: Fragmented and or complex ownership structure3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant
          C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important4 - Important
          C1P003: Lack of internal capacities to support energy transition3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
          C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Any other Administrative BARRIER (if any)
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies4 - Important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important
          C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important3 - Moderately important
          C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important2 - Slightly important
          C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P004: Any other Political BARRIER (if any)
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies4 - Important3 - Moderately important2 - Slightly important4 - Important5 - Very important4 - Important4 - Important5 - Very important
          C1P005: Regulatory instability3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
          C1P005: Non-effective regulations4 - Important2 - Slightly important3 - Moderately important3 - Moderately important5 - Very important2 - Slightly important4 - Important1 - Unimportant
          C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant3 - Moderately important4 - Important5 - Very important
          C1P005: Building code and land-use planning hindering innovative technologies4 - Important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important5 - Very important
          C1P005: Insufficient or insecure financial incentives4 - Important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
          C1P005: Shortage of proven and tested solutions and examples2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important3 - Moderately important5 - Very important
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriers
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel4 - Important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important2 - Slightly important
          C1P007: Deficient planning3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important
          C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important
          C1P007: Lack of well-defined process4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
          C1P007: Inaccuracy in energy modelling and simulation4 - Important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant
          C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant
          C1P007: Grid congestion, grid instability4 - Important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
          C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
          C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important5 - Very important
          C1P007: Difficult definition of system boundaries3 - Moderately important5 - Very important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
          C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER (if any)
          C1P008: Social and Cultural barriers
          C1P008: Inertia4 - Important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
          C1P008: Lack of values and interest in energy optimization measurements5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
          C1P008: Low acceptance of new projects and technologies5 - Very important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important
          C1P008: Difficulty of finding and engaging relevant actors5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
          C1P008: Lack of trust beyond social network4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant
          C1P008: Rebound effect4 - Important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant
          C1P008: Hostile or passive attitude towards environmentalism5 - Very important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
          C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
          C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
          C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
          C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts2 - Slightly important4 - Important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant
          C1P009: Lack of awareness among authorities1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important4 - Important2 - Slightly important
          C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant
          C1P009: High costs of design, material, construction, and installation3 - Moderately important4 - Important3 - Moderately important4 - Important4 - Important4 - Important4 - Important
          C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER (if any)
          C1P010: Financial barriers
          C1P010: Hidden costs1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant
          C1P010: Insufficient external financial support and funding for project activities2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant
          C1P010: Economic crisis1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important
          C1P010: Risk and uncertainty3 - Moderately important3 - Moderately important3 - Moderately important4 - Important5 - Very important4 - Important2 - Slightly important
          C1P010: Lack of consolidated and tested business models3 - Moderately important4 - Important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant
          C1P010: Limited access to capital and cost disincentives2 - Slightly important4 - Important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant
          C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives2 - Slightly important4 - Important3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
          C1P011: Energy price distortion2 - Slightly important4 - Important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
          C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant4 - Important4 - Important2 - Slightly important
          C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Planning/leading
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: Research & Innovation
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Financial/Funding
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          C1P012: Analyst, ICT and Big Data
          • Monitoring/operation/management
          • Planning/leading
          • Planning/leading,
          • Monitoring/operation/management
          C1P012: Business process management
          • Planning/leading,
          • Monitoring/operation/management
          • Planning/leading
          • Monitoring/operation/management
          C1P012: Urban Services providers
          • Planning/leading
          • Planning/leading
          • Planning/leading,
          • Monitoring/operation/management
          C1P012: Real Estate developers
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Design/Construction companies
          • Design/demand aggregation
          • Planning/leading
          • Construction/implementation
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: End‐users/Occupants/Energy Citizens
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Design/demand aggregation
          C1P012: Social/Civil Society/NGOs
          • Monitoring/operation/management
          • Construction/implementation
          • Design/demand aggregation
          C1P012: Industry/SME/eCommerce
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation
          • Construction/implementation
          C1P012: Other
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)