Name | Project | Type | Compare |
---|---|---|---|
Tartu, Estonia | V2G-QUESTS | PED Relevant Case Study | Compare |
Utrecht, the Netherlands (District of Kanaleneiland) | V2G-QUESTS | PED Relevant Case Study | Compare |
Aveiro, Portugal | V2G-QUESTS | PED Relevant Case Study | Compare |
Győr Geothermal District Heating Project | PED Relevant Case Study | Compare | |
Jacobs Borchs Gate, Drammen | PED Relevant Case Study | Compare | |
Dietenbach, Freiburg im Breisgau | PED Relevant Case Study | Compare | |
SmartEnCity, Lecce | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study | Compare |
STARDUST, Trento | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study / PED Lab | Compare |
Klimatkontrakt Hyllie, Malmö | PED Relevant Case Study | Compare | |
EnStadt:Pfaff, Kaiserslautern | PED Relevant Case Study / PED Lab | Compare | |
mySMARTlife, Helsinki | PED Relevant Case Study | Compare | |
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze | PED Relevant Case Study | Compare | |
Sinfonia, Bolzano | PED Relevant Case Study | Compare | |
Hunziker Areal, Zürich | PED Relevant Case Study | Compare | |
Hammarby Sjöstad 2.0, | PED Relevant Case Study | Compare | |
Sharing Cities, Milano | PED Relevant Case Study | Compare | |
District Heating Pozo Barredo, Mieres | PED Relevant Case Study | Compare | |
Cityfied (demo Linero), Lund | PED Relevant Case Study | Compare | |
Smart Otaniemi, Espoo | PED Relevant Case Study / PED Lab | Compare | |
Zukunftsquartier, Vienna | PED Case Study | Compare | |
Santa Chiara Open Lab, Trento | PED Case Study | Compare | |
Barrio La Pinada, Paterna | PED Case Study / PED Lab | Compare | |
Zero Village Bergen (ZVB) | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Võru +CityxChange | PED Case Study | Compare | |
NTNU Campus within the Knowledge Axis, Trondheim | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Furuset project, Oslo | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Laser Valley – Land of Lights | PED Case Study | Compare | |
Ydalir project | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
NyBy – Ny Flyplass (New City – New Airport) | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Fornebu, Bærum | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Fleuraye west, Carquefou | PED Case Study | Compare | |
Smart Energy Åland | PED Case Study | Compare | |
Romania, Alba Iulia PED | ASCEND – Accelerate poSitive Clean ENergy Districts | PED Case Study | Compare |
Romania, Alba Iulia PED | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Munich, Harthof district | PED Case Study | Compare | |
Lublin | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Bærum, Eiksveien 116 | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Findhorn, the Park | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Amsterdam, Buiksloterham PED | ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities | PED Case Study | Compare |
Schönbühel-Aggsbach, Schönbühel an der Donau | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Uncompare |
Umeå, Ålidhem district | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Aalborg East | PED Relevant Case Study / PED Lab | Compare | |
Ankara, Çamlık District | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study / PED Relevant Case Study | Compare |
Trenčín | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Luxembourg, Betzdorf | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Vantaa, Aviapolis | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Vidin, Himik and Bononia | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Oslo, Verksbyen | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Uden, Loopkantstraat | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Relevant Case Study | Compare |
Zaragoza, Actur | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Relevant Case Study | Compare |
Aarhus, Brabrand | BIPED – Building Intelligent Positive Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Riga, Ķīpsala, RTU smart student city | ExPEDite – Enabling Positive Energy Districts through Digital Twins | PED Case Study | Uncompare |
Izmir, District of Karşıyaka | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Istanbul, Ozyegin University Campus | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Espoo, Kera | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study / PED Relevant Case Study | Compare |
Borlänge, Rymdgatan’s Residential Portfolio | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Uncompare |
Freiburg, Waldsee | PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district | PED Case Study | Uncompare |
Innsbruck, Campagne-Areal | PED Relevant Case Study | Compare | |
Graz, Reininghausgründe | PED Case Study | Compare | |
Stor-Elvdal, Campus Evenstad | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Relevant Case Study | Compare |
Oulu, Kaukovainio | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Uncompare |
Halmstad, Fyllinge | PED Relevant Case Study | Compare | |
Lund, Brunnshög district | PED Case Study | Compare | |
Vienna, Am Kempelenpark | PED Case Study | Compare | |
Évora, Portugal | POCITYF – A POsitive Energy CITY Transformation Framework | PED Relevant Case Study / PED Lab | Uncompare |
Kladno, Sletiště (Sport Area), PED Winter Stadium | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Compare |
Groningen, PED South | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Groningen, PED North | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Maia, Sobreiro Social Housing | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Lab | Compare |
Lubia (Soria), CEDER-CIEMAT | PED Lab | Compare | |
Tampere, Ilokkaanpuisto district | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study | Compare |
Leon, Former Sugar Factory district | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Istanbul, Kadikoy district, Caferaga | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Espoo, Leppävaara district, Sello center | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Espoo, Espoonlahti district, Lippulaiva block | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Salzburg, Gneis district | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Barcelona, Santa Coloma de Gramenet | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Tartu, City centre area | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study / PED Lab | Compare |
Bologna, Pilastro-Roveri district | GRETA – GReen Energy Transition Actions | PED Relevant Case Study | Compare |
Barcelona, SEILAB & Energy SmartLab | PED Lab | Compare | |
Leipzig, Baumwollspinnerei district | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Kifissia, Energy community | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study |
Title | Kifissia, Energy community | Oulu, Kaukovainio | Évora, Portugal | Schönbühel-Aggsbach, Schönbühel an der Donau | Borlänge, Rymdgatan’s Residential Portfolio | Freiburg, Waldsee | Riga, Ķīpsala, RTU smart student city |
---|---|---|---|---|---|---|---|
A1P001: Name of the PED case study / PED Lab | |||||||
A1P001: Name of the PED case study / PED Lab | Kifissia, Energy community | Oulu, Kaukovainio | Évora, Portugal | Schönbühel-Aggsbach, Schönbühel an der Donau | Borlänge, Rymdgatan’s Residential Portfolio | Freiburg, Waldsee | Riga, Ķīpsala, RTU smart student city |
A1P002: Map / aerial view / photos / graphic details / leaflet | |||||||
A1P002: Map / aerial view / photos / graphic details / leaflet |
|
| |||||
A1P003: Categorisation of the PED site | |||||||
PED case study | no | yes | no | no | no | yes | yes |
PED relevant case study | yes | no | yes | yes | yes | no | no |
PED Lab. | no | no | yes | no | no | no | no |
A1P004: Targets of the PED case study / PED Lab | |||||||
Climate neutrality | no | yes | no | yes | yes | yes | yes |
Annual energy surplus | no | no | yes | no | yes | no | no |
Energy community | yes | no | yes | yes | yes | yes | yes |
Circularity | no | yes | no | no | no | no | no |
Air quality and urban comfort | yes | no | no | no | no | no | no |
Electrification | yes | yes | no | no | yes | yes | no |
Net-zero energy cost | no | no | no | yes | no | no | no |
Net-zero emission | no | no | no | no | no | yes | no |
Self-sufficiency (energy autonomous) | no | no | no | no | no | no | yes |
Maximise self-sufficiency | no | no | no | yes | yes | no | yes |
Other | no | no | no | no | no | no | no |
Other (A1P004) | |||||||
A1P005: Phase of the PED case study / PED Lab | |||||||
A1P005: Project Phase of your case study/PED Lab | Planning Phase | In operation | Implementation Phase | Implementation Phase | Planning Phase | Planning Phase | Planning Phase |
A1P006: Start Date | |||||||
A1P006: Start date | 10/19 | 11/21 | 01/24 | ||||
A1P007: End Date | |||||||
A1P007: End date | 09/24 | 11/24 | 12/26 | ||||
A1P008: Reference Project | |||||||
A1P008: Reference Project | |||||||
A1P009: Data availability | |||||||
A1P009: Data availability |
|
|
|
|
| ||
A1P009: Other | |||||||
A1P010: Sources | |||||||
Any publication, link to website, deliverable referring to the PED/PED Lab |
| ||||||
A1P011: Geographic coordinates | |||||||
X Coordinate (longitude): | 23.814588 | 25.517595084093507 | -7.909377 | 15.3969 | 15.394495 | 7.885857135842917 | 24.08168339 |
Y Coordinate (latitude): | 38.077349 | 64.99288098173132 | 38.570804 | 48.2752 | 60.486609 | 47.986535207080045 | 56.95245956 |
A1P012: Country | |||||||
A1P012: Country | Greece | Finland | Portugal | Austria | Sweden | Germany | Latvia |
A1P013: City | |||||||
A1P013: City | Municipality of Kifissia | Oulu | Évora | Schönbühel an der Donau | Borlänge | Freiburg im Breisgau | Riga |
A1P014: Climate Zone (Köppen Geiger classification) | |||||||
A1P014: Climate Zone (Köppen Geiger classification). | Csa | Dfc | Csa | Dfb | Dsb | Cfb | Cfb |
A1P015: District boundary | |||||||
A1P015: District boundary | Virtual | Geographic | Geographic | Geographic | Virtual | Geographic | |
Other | The energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood | Regional (close to virtual) | |||||
A1P016: Ownership of the case study/PED Lab | |||||||
A1P016: Ownership of the case study/PED Lab: | Mixed | Mixed | Private | Mixed | Mixed | Public | |
A1P017: Ownership of the land / physical infrastructure | |||||||
A1P017: Ownership of the land / physical infrastructure: | Single Owner | Multiple Owners | Multiple Owners | Single Owner | Multiple Owners | Multiple Owners | |
A1P018: Number of buildings in PED | |||||||
A1P018: Number of buildings in PED | 6 | 0 | 10 | 2941 | 15 | ||
A1P019: Conditioned space | |||||||
A1P019: Conditioned space [m²] | 19700 | 477 | 3700 | 284070 | 170000 | ||
A1P020: Total ground area | |||||||
A1P020: Total ground area [m²] | 60000 | 2450 | 9945 | 4920000 | 119264 | ||
A1P021: Floor area ratio: Conditioned space / total ground area | |||||||
A1P021: Floor area ratio: Conditioned space / total ground area | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
A1P022: Financial schemes | |||||||
A1P022a: Financing - PRIVATE - Real estate | no | yes | no | yes | no | no | no |
A1P022a: Add the value in EUR if available [EUR] | |||||||
A1P022b: Financing - PRIVATE - ESCO scheme | no | no | no | no | no | no | no |
A1P022b: Add the value in EUR if available [EUR] | |||||||
A1P022c: Financing - PRIVATE - Other | no | no | no | no | no | no | no |
A1P022c: Add the value in EUR if available [EUR] | |||||||
A1P022d: Financing - PUBLIC - EU structural funding | no | no | no | no | no | no | no |
A1P022d: Add the value in EUR if available [EUR] | |||||||
A1P022e: Financing - PUBLIC - National funding | no | no | no | yes | no | no | no |
A1P022e: Add the value in EUR if available [EUR] | |||||||
A1P022f: Financing - PUBLIC - Regional funding | no | no | no | yes | no | no | no |
A1P022f: Add the value in EUR if available [EUR] | |||||||
A1P022g: Financing - PUBLIC - Municipal funding | no | yes | no | no | no | yes | no |
A1P022g: Add the value in EUR if available [EUR] | |||||||
A1P022h: Financing - PUBLIC - Other | no | no | no | no | no | no | no |
A1P022h: Add the value in EUR if available [EUR] | |||||||
A1P022i: Financing - RESEARCH FUNDING - EU | no | yes | yes | no | no | yes | yes |
A1P022i: Add the value in EUR if available [EUR] | 19998275 | 7500000 | |||||
A1P022j: Financing - RESEARCH FUNDING - National | no | no | no | no | no | yes | no |
A1P022j: Add the value in EUR if available [EUR] | |||||||
A1P022k: Financing - RESEARCH FUNDING - Local/regional | no | no | no | no | no | no | no |
A1P022k: Add the value in EUR if available [EUR] | |||||||
A1P022l: Financing - RESEARCH FUNDING - Other | no | no | no | no | no | no | no |
A1P022l: Add the value in EUR if available [EUR] | |||||||
A1P022: Other | |||||||
A1P023: Economic Targets | |||||||
A1P023: Economic Targets |
|
|
| ||||
A1P023: Other | Developing and demonstrating new solutions | ||||||
A1P024: More comments: | |||||||
A1P024: More comments: | |||||||
A1P025: Estimated PED case study / PED LAB costs | |||||||
A1P025: Estimated PED case study / PED LAB costs [mil. EUR] | 5 | ||||||
Contact person for general enquiries | |||||||
A1P026: Name | Artemis Giavasoglou, Kleopatra Kalampoka | Samuli Rinne | João Bravo Dias | Ghazal Etminan | Jingchun Shen | Dr. Annette Steingrube | Judith Stiekema |
A1P027: Organization | Municipality of Kifissia – SPARCS local team | City of Oulu | EDP Labelec | Ghazal.Etminan@ait.ac.at | Högskolan Dalarna | Fraunhofer Institute for solar energy systems | OASC |
A1P028: Affiliation | Municipality / Public Bodies | Municipality / Public Bodies | SME / Industry | Research Center / University | Research Center / University | Research Center / University | Other |
A1P028: Other | not for profit private organisation | ||||||
A1P029: Email | giavasoglou@kifissia.gr | samuli.rinne@ouka.fi | joao.bravodias@edp.pt | Ghazal.Etminan@ait.ac.at | jih@du.se | Annette.Steingrube@ise.fraunhofer.de | judith@oascities.org |
Contact person for other special topics | |||||||
A1P030: Name | Stavros Zapantis - vice mayor | Samuli Rinne | Xingxing Zhang | ||||
A1P031: Email | stavros.zapantis@gmail.com | samuli.rinne@ouka.fi | xza@du.se | ||||
Pursuant to the General Data Protection Regulation | Yes | Yes | Yes | Yes | Yes | Yes | |
A2P001: Fields of application | |||||||
A2P001: Fields of application |
|
|
|
|
|
|
|
A2P001: Other | |||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | |||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | Different kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place. | Energy modeling | Load calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREM | Energy system modeling | A suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices. | ||
A2P003: Application of ISO52000 | |||||||
A2P003: Application of ISO52000 | No | No | No | No | Yes | No | |
A2P004: Appliances included in the calculation of the energy balance | |||||||
A2P004: Appliances included in the calculation of the energy balance | No | Yes | Yes | Yes | Yes | Yes | |
A2P005: Mobility included in the calculation of the energy balance | |||||||
A2P005: Mobility included in the calculation of the energy balance | No | Yes | No | No | Yes | Yes | |
A2P006: Description of how mobility is included (or not included) in the calculation | |||||||
A2P006: Description of how mobility is included (or not included) in the calculation | Not included. However, there is a charging place for a shared EV in one building. | All energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutrality | The university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus. | ||||
A2P007: Annual energy demand in buildings / Thermal demand | |||||||
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum] | 2.1 | 0.066 | 0.6777 | 135.715 | 8000 | ||
A2P008: Annual energy demand in buildings / Electric Demand | |||||||
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum] | 0.2 | 0.012 | 0.03656 | 31.76 | 5000 | ||
A2P009: Annual energy demand for e-mobility | |||||||
A2P009: Annual energy demand for e-mobility [GWh/annum] | 0 | ||||||
A2P010: Annual energy demand for urban infrastructure | |||||||
A2P010: Annual energy demand for urban infrastructure [GWh/annum] | 0 | ||||||
A2P011: Annual renewable electricity production on-site during target year | |||||||
A2P011: PV | yes | yes | no | yes | no | no | no |
A2P011: PV - specify production in GWh/annum [GWh/annum] | 0.1 | ||||||
A2P011: Wind | no | no | no | no | no | no | yes |
A2P011: Wind - specify production in GWh/annum [GWh/annum] | |||||||
A2P011: Hydro | no | no | no | no | no | no | no |
A2P011: Hydro - specify production in GWh/annum [GWh/annum] | |||||||
A2P011: Biomass_el | no | no | no | no | no | no | no |
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum] | |||||||
A2P011: Biomass_peat_el | no | no | no | no | no | no | no |
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum] | |||||||
A2P011: PVT_el | no | no | no | no | yes | no | yes |
A2P011: PVT_el - specify production in GWh/annum [GWh/annum] | 0.01818 | ||||||
A2P011: Other | no | no | no | no | no | no | no |
A2P011: Other - specify production in GWh/annum [GWh/annum] | |||||||
A2P012: Annual renewable thermal production on-site during target year | |||||||
A2P012: Geothermal | no | no | no | no | no | no | no |
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P012: Solar Thermal | no | no | no | no | no | no | no |
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P012: Biomass_heat | no | no | no | no | no | no | yes |
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P012: Waste heat+HP | no | yes | no | no | no | no | no |
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum] | 2.2 | ||||||
A2P012: Biomass_peat_heat | no | no | no | no | no | no | no |
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P012: PVT_th | no | no | no | no | yes | no | no |
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum] | 0.0825 | ||||||
A2P012: Biomass_firewood_th | no | no | no | no | no | no | no |
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P012: Other | no | no | no | no | no | no | no |
A2P012 - Other: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P013: Renewable resources on-site - Additional notes | |||||||
A2P013: Renewable resources on-site - Additional notes | Heat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that) | 53 MW PV potential in all three quarters; no other internal renewable energy potentials known | Conventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES. | ||||
A2P014: Annual energy use | |||||||
A2P014: Annual energy use [GWh/annum] | 2.3 | 0.079 | 0.318 | 132.5 | |||
A2P015: Annual energy delivered | |||||||
A2P015: Annual energy delivered [GWh/annum] | 0.0011 | 0.2055 | |||||
A2P016: Annual non-renewable electricity production on-site during target year | |||||||
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum] | 0 | 0 | |||||
A2P017: Annual non-renewable thermal production on-site during target year | |||||||
A2P017: Gas | no | no | no | no | no | no | yes |
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||||
A2P017: Coal | no | no | no | no | no | no | no |
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||||
A2P017: Oil | no | no | no | no | no | no | no |
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||||
A2P017: Other | no | no | no | no | yes | no | no |
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum] | 0 | ||||||
A2P018: Annual renewable electricity imports from outside the boundary during target year | |||||||
A2P018: PV | no | yes | no | yes | no | no | no |
A2P018 - PV: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: Wind | no | yes | no | yes | no | no | no |
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: Hydro | no | yes | no | yes | no | no | no |
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: Biomass_el | no | yes | no | yes | no | no | no |
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: Biomass_peat_el | no | yes | no | no | no | no | no |
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: PVT_el | no | no | no | no | no | no | no |
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: Other | no | no | no | no | yes | no | no |
A2P018 - Other: specify production in GWh/annum if available [GWh/annum] | 0.187 | ||||||
A2P019: Annual renewable thermal imports from outside the boundary during target year | |||||||
A2P019: Geothermal | no | no | no | no | no | no | no |
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Solar Thermal | no | no | no | no | no | no | no |
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Biomass_heat | no | yes | no | no | no | no | no |
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum] | 0.7 | ||||||
A2P019: Waste heat+HP | no | no | no | no | no | no | no |
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Biomass_peat_heat | no | no | no | no | no | no | no |
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: PVT_th | no | no | no | no | no | no | no |
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Biomass_firewood_th | no | no | no | yes | no | no | no |
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Other | no | no | no | no | yes | no | no |
A2P019 Other: Please specify imports in GWh/annum [GWh/annum] | 0 | ||||||
A2P020: Share of RES on-site / RES outside the boundary | |||||||
A2P020: Share of RES on-site / RES outside the boundary | 0 | 3.2857142857143 | 0 | 0 | 0.53839572192513 | 0 | 0 |
A2P021: GHG-balance calculated for the PED | |||||||
A2P021: GHG-balance calculated for the PED [tCO2/annum] | 0 | 4 | 6.93 | ||||
A2P022: KPIs related to the PED case study / PED Lab | |||||||
A2P022: Safety & Security | none | ||||||
A2P022: Health | Encouraging a healthy lifestyle | thermal comfort diagram | |||||
A2P022: Education | none | ||||||
A2P022: Mobility | Modal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV charging | none | yes | ||||
A2P022: Energy | Final energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reduction | normalized CO2/GHG & Energy intensity | yes | ||||
A2P022: Water | |||||||
A2P022: Economic development | Total investments, Payback time, Economic value of savings | cost of excess emissions | |||||
A2P022: Housing and Community | Development of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy poverty | Specify the associated KPIs | yes | ||||
A2P022: Waste | Recycling rate | ||||||
A2P022: Other | Smart Cities strategies, Quality of open data | ||||||
A2P023: Technological Solutions / Innovations - Energy Generation | |||||||
A2P023: Photovoltaics | no | yes | yes | yes | yes | yes | no |
A2P023: Solar thermal collectors | no | no | yes | no | yes | yes | no |
A2P023: Wind Turbines | no | no | no | no | no | no | no |
A2P023: Geothermal energy system | no | no | no | no | yes | yes | no |
A2P023: Waste heat recovery | no | yes | no | no | yes | yes | no |
A2P023: Waste to energy | no | no | no | no | no | yes | no |
A2P023: Polygeneration | no | no | no | no | no | no | no |
A2P023: Co-generation | no | yes | no | no | no | yes | no |
A2P023: Heat Pump | no | yes | no | yes | yes | yes | no |
A2P023: Hydrogen | no | no | no | no | no | yes | no |
A2P023: Hydropower plant | no | no | no | no | no | yes | no |
A2P023: Biomass | no | yes | no | no | no | yes | no |
A2P023: Biogas | no | no | no | no | no | yes | no |
A2P023: Other | |||||||
A2P024: Technological Solutions / Innovations - Energy Flexibility | |||||||
A2P024: A2P024: Information and Communication Technologies (ICT) | no | yes | yes | no | yes | yes | yes |
A2P024: Energy management system | no | yes | yes | yes | no | yes | yes |
A2P024: Demand-side management | no | no | no | no | no | yes | yes |
A2P024: Smart electricity grid | no | no | yes | no | no | yes | yes |
A2P024: Thermal Storage | no | yes | yes | no | yes | yes | yes |
A2P024: Electric Storage | no | no | yes | no | no | yes | yes |
A2P024: District Heating and Cooling | no | yes | no | no | yes | yes | yes |
A2P024: Smart metering and demand-responsive control systems | no | no | yes | no | no | yes | yes |
A2P024: P2P – buildings | no | no | yes | yes | no | yes | no |
A2P024: Other | |||||||
A2P025: Technological Solutions / Innovations - Energy Efficiency | |||||||
A2P025: Deep Retrofitting | no | yes | no | yes | yes | yes | no |
A2P025: Energy efficiency measures in historic buildings | no | no | yes | yes | no | yes | no |
A2P025: High-performance new buildings | no | yes | no | no | no | no | no |
A2P025: Smart Public infrastructure (e.g. smart lighting) | no | no | no | no | no | no | no |
A2P025: Urban data platforms | no | yes | yes | no | no | yes | yes |
A2P025: Mobile applications for citizens | no | no | yes | no | no | no | yes |
A2P025: Building services (HVAC & Lighting) | no | yes | yes | no | yes | no | yes |
A2P025: Smart irrigation | no | no | no | no | no | no | no |
A2P025: Digital tracking for waste disposal | no | no | yes | no | no | no | no |
A2P025: Smart surveillance | no | no | yes | no | no | no | no |
A2P025: Other | |||||||
A2P026: Technological Solutions / Innovations - Mobility | |||||||
A2P026: Efficiency of vehicles (public and/or private) | no | yes | no | no | no | yes | no |
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances) | no | yes | no | no | no | yes | no |
A2P026: e-Mobility | no | yes | yes | no | no | yes | no |
A2P026: Soft mobility infrastructures and last mile solutions | no | yes | yes | no | no | yes | no |
A2P026: Car-free area | no | no | no | no | no | no | no |
A2P026: Other | |||||||
A2P027: Mobility strategies - Additional notes | |||||||
A2P027: Mobility strategies - Additional notes | |||||||
A2P028: Energy efficiency certificates | |||||||
A2P028: Energy efficiency certificates | Yes | No | Yes | No | No | No | |
A2P028: If yes, please specify and/or enter notes | Energy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwelling | The obligatory buildijng energy classification | |||||
A2P029: Any other building / district certificates | |||||||
A2P029: Any other building / district certificates | No | No | No | No | No | No | |
A2P029: If yes, please specify and/or enter notes | |||||||
A3P001: Relevant city /national strategy | |||||||
A3P001: Relevant city /national strategy |
|
|
|
|
|
|
|
A3P002: Quantitative targets included in the city / national strategy | |||||||
A3P002: Quantitative targets included in the city / national strategy | Carbon neutrality by 2035 | The study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030. | Climate neutrality by 2035 | ||||
A3P003: Strategies towards decarbonization of the gas grid | |||||||
A3P003: Strategies towards decarbonization of the gas grid |
| ||||||
A3P003: Other | |||||||
A3P004: Identification of needs and priorities | |||||||
A3P004: Identification of needs and priorities | Developing and demonstrating solutions for carbon neutrality | In our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements. | Freiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district level | ||||
A3P005: Sustainable behaviour | |||||||
A3P005: Sustainable behaviour | E. g. visualizing energy and water consumption | While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve. | Energy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economy | ||||
A3P006: Economic strategies | |||||||
A3P006: Economic strategies |
|
|
|
|
| ||
A3P006: Other | |||||||
A3P007: Social models | |||||||
A3P007: Social models |
|
|
|
|
| ||
A3P007: Other | |||||||
A3P008: Integrated urban strategies | |||||||
A3P008: Integrated urban strategies |
|
|
|
| |||
A3P008: Other | |||||||
A3P009: Environmental strategies | |||||||
A3P009: Environmental strategies |
|
|
|
| |||
A3P009: Other | |||||||
A3P010: Legal / Regulatory aspects | |||||||
A3P010: Legal / Regulatory aspects | |||||||
B1P001: PED/PED relevant concept definition | |||||||
B1P001: PED/PED relevant concept definition | The original idea is that the area produces at least as much it consumes. | The PED main objective is to achieve the energy transition while preserving cultural heritage and improving citizen’s quality of life. | The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively. | Assessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case study | ExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs. | ||
B1P002: Motivation behind PED/PED relevant project development | |||||||
B1P002: Motivation behind PED/PED relevant project development | Developing systems towards carbon neutrality. Also urban renewal. | POCITYF brings together eight cities (Lightouse and Fellow cities), all having cultural heritage areas in their territory. All are intrinsically motivated to participate in the necessary energy transition not only for their conventional city districts of mixed-used, but also for districts with individually specificities as those belonging in their cultural heritage, which at the moment may be acting as barriers for their further environmental sustainability, but after POCITYF will be acting as a promising building retrofits roadmap for similar and other EU cities. | Borlänge city has committed to become the carbon-neutral city by 2030. | City is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regard | Expected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions. | ||
B1P003: Environment of the case study area | |||||||
B2P003: Environment of the case study area | Suburban area | Urban area | Rurban | Urban area | Suburban area | Urban area | |
B1P004: Type of district | |||||||
B2P004: Type of district |
|
|
|
|
| ||
B1P005: Case Study Context | |||||||
B1P005: Case Study Context |
|
|
|
|
| ||
B1P006: Year of construction | |||||||
B1P006: Year of construction | 1990 | ||||||
B1P007: District population before intervention - Residential | |||||||
B1P007: District population before intervention - Residential | 3500 | 100 | 5898 | ||||
B1P008: District population after intervention - Residential | |||||||
B1P008: District population after intervention - Residential | 3500 | 100 | 5898 | ||||
B1P009: District population before intervention - Non-residential | |||||||
B1P009: District population before intervention - Non-residential | 6 | ||||||
B1P010: District population after intervention - Non-residential | |||||||
B1P010: District population after intervention - Non-residential | 6 | ||||||
B1P011: Population density before intervention | |||||||
B1P011: Population density before intervention | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
B1P012: Population density after intervention | |||||||
B1P012: Population density after intervention | 0 | 0.058333333333333 | 0 | 0 | 0.010658622423328 | 0.0011987804878049 | 0 |
B1P013: Building and Land Use before intervention | |||||||
B1P013: Residential | no | yes | no | yes | yes | yes | no |
B1P013 - Residential: Specify the sqm [m²] | 4360 | ||||||
B1P013: Office | no | no | no | yes | no | yes | no |
B1P013 - Office: Specify the sqm [m²] | |||||||
B1P013: Industry and Utility | no | no | no | no | no | yes | no |
B1P013 - Industry and Utility: Specify the sqm [m²] | |||||||
B1P013: Commercial | no | yes | no | no | no | yes | no |
B1P013 - Commercial: Specify the sqm [m²] | |||||||
B1P013: Institutional | no | no | no | no | no | yes | no |
B1P013 - Institutional: Specify the sqm [m²] | |||||||
B1P013: Natural areas | no | yes | no | no | no | yes | no |
B1P013 - Natural areas: Specify the sqm [m²] | |||||||
B1P013: Recreational | no | yes | no | no | no | yes | no |
B1P013 - Recreational: Specify the sqm [m²] | |||||||
B1P013: Dismissed areas | no | no | no | no | no | no | no |
B1P013 - Dismissed areas: Specify the sqm [m²] | |||||||
B1P013: Other | no | no | no | no | yes | no | no |
B1P013 - Other: Specify the sqm [m²] | 706 | ||||||
B1P014: Building and Land Use after intervention | |||||||
B1P014: Residential | no | yes | no | yes | yes | yes | no |
B1P014 - Residential: Specify the sqm [m²] | 4360 | ||||||
B1P014: Office | no | no | no | yes | no | yes | no |
B1P014 - Office: Specify the sqm [m²] | |||||||
B1P014: Industry and Utility | no | no | no | no | no | yes | no |
B1P014 - Industry and Utility: Specify the sqm [m²] | |||||||
B1P014: Commercial | no | yes | no | no | no | yes | no |
B1P014 - Commercial: Specify the sqm [m²] | |||||||
B1P014: Institutional | no | no | no | no | no | yes | no |
B1P014 - Institutional: Specify the sqm [m²] | |||||||
B1P014: Natural areas | no | yes | no | no | no | yes | no |
B1P014 - Natural areas: Specify the sqm [m²] | |||||||
B1P014: Recreational | no | yes | no | no | no | yes | no |
B1P014 - Recreational: Specify the sqm [m²] | |||||||
B1P014: Dismissed areas | no | no | no | no | no | no | no |
B1P014 - Dismissed areas: Specify the sqm [m²] | |||||||
B1P014: Other | no | no | no | no | yes | no | no |
B1P014 - Other: Specify the sqm [m²] | 706 | ||||||
B2P001: PED Lab concept definition | |||||||
B2P001: PED Lab concept definition | |||||||
B2P002: Installation life time | |||||||
B2P002: Installation life time | |||||||
B2P003: Scale of action | |||||||
B2P003: Scale | District | ||||||
B2P004: Operator of the installation | |||||||
B2P004: Operator of the installation | |||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | |||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | |||||||
B2P006: Circular Economy Approach | |||||||
B2P006: Do you apply any strategy to reuse and recycling the materials? | |||||||
B2P006: Other | |||||||
B2P007: Motivation for developing the PED Lab | |||||||
B2P007: Motivation for developing the PED Lab | |||||||
B2P007: Other | |||||||
B2P008: Lead partner that manages the PED Lab | |||||||
B2P008: Lead partner that manages the PED Lab | |||||||
B2P008: Other | |||||||
B2P009: Collaborative partners that participate in the PED Lab | |||||||
B2P009: Collaborative partners that participate in the PED Lab | |||||||
B2P009: Other | |||||||
B2P010: Synergies between the fields of activities | |||||||
B2P010: Synergies between the fields of activities | |||||||
B2P011: Available facilities to test urban configurations in PED Lab | |||||||
B2P011: Available facilities to test urban configurations in PED Lab |
| ||||||
B2P011: Other | |||||||
B2P012: Incubation capacities of PED Lab | |||||||
B2P012: Incubation capacities of PED Lab |
| ||||||
B2P013: Availability of the facilities for external people | |||||||
B2P013: Availability of the facilities for external people | |||||||
B2P014: Monitoring measures | |||||||
B2P014: Monitoring measures | |||||||
B2P015: Key Performance indicators | |||||||
B2P015: Key Performance indicators |
| ||||||
B2P016: Execution of operations | |||||||
B2P016: Execution of operations | |||||||
B2P017: Capacities | |||||||
B2P017: Capacities | |||||||
B2P018: Relations with stakeholders | |||||||
B2P018: Relations with stakeholders | |||||||
B2P019: Available tools | |||||||
B2P019: Available tools | |||||||
B2P019: Available tools | |||||||
B2P020: External accessibility | |||||||
B2P020: External accessibility | |||||||
C1P001: Unlocking Factors | |||||||
C1P001: Recent technological improvements for on-site RES production | 5 - Very important | 5 - Very important | 4 - Important | 4 - Important | 4 - Important | 3 - Moderately important | 5 - Very important |
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock | 5 - Very important | 2 - Slightly important | 3 - Moderately important | 2 - Slightly important | 5 - Very important | 3 - Moderately important | 5 - Very important |
C1P001: Energy Communities, P2P, Prosumers concepts | 5 - Very important | 2 - Slightly important | 5 - Very important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 5 - Very important |
C1P001: Storage systems and E-mobility market penetration | 1 - Unimportant | 4 - Important | 4 - Important | 3 - Moderately important | 4 - Important | 4 - Important | |
C1P001: Decreasing costs of innovative materials | 4 - Important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 2 - Slightly important | 4 - Important |
C1P001: Financial mechanisms to reduce costs and maximize benefits | 4 - Important | 3 - Moderately important | 4 - Important | 5 - Very important | 5 - Very important | 2 - Slightly important | 5 - Very important |
C1P001: The ability to predict Multiple Benefits | 4 - Important | 2 - Slightly important | 2 - Slightly important | 4 - Important | 3 - Moderately important | 5 - Very important | |
C1P001: The ability to predict the distribution of benefits and impacts | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 2 - Slightly important | 5 - Very important | |
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up) | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 4 - Important | 5 - Very important |
C1P001: Social acceptance (top-down) | 5 - Very important | 5 - Very important | 4 - Important | 3 - Moderately important | 5 - Very important | 4 - Important | 4 - Important |
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.) | 3 - Moderately important | 2 - Slightly important | 4 - Important | 5 - Very important | 4 - Important | 4 - Important | 5 - Very important |
C1P001: Presence of integrated urban strategies and plans | 3 - Moderately important | 4 - Important | 5 - Very important | 3 - Moderately important | 5 - Very important | 4 - Important | 4 - Important |
C1P001: Multidisciplinary approaches available for systemic integration | 3 - Moderately important | 4 - Important | 5 - Very important | 1 - Unimportant | 5 - Very important | 4 - Important | 5 - Very important |
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects | 4 - Important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 5 - Very important |
C1P001: Availability of RES on site (Local RES) | 4 - Important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important | 4 - Important | |
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders | 4 - Important | 4 - Important | 4 - Important | 4 - Important | 2 - Slightly important | 2 - Slightly important | 4 - Important |
C1P001: Any other UNLOCKING FACTORS | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | |
C1P001: Any other UNLOCKING FACTORS (if any) | |||||||
C1P002: Driving Factors | |||||||
C1P002: Climate Change adaptation need | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important | 5 - Very important | 4 - Important | 5 - Very important |
C1P002: Climate Change mitigation need (local RES production and efficiency) | 5 - Very important | 5 - Very important | 4 - Important | 5 - Very important | 5 - Very important | 4 - Important | 4 - Important |
C1P002: Rapid urbanization trend and need of urban expansions | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 4 - Important |
C1P002: Urban re-development of existing built environment | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 2 - Slightly important | 4 - Important |
C1P002: Economic growth need | 2 - Slightly important | 2 - Slightly important | 4 - Important | 2 - Slightly important | 4 - Important | 1 - Unimportant | 4 - Important |
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.) | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 4 - Important |
C1P002: Territorial and market attractiveness | 2 - Slightly important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 4 - Important |
C1P002: Energy autonomy/independence | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | 3 - Moderately important | 4 - Important |
C1P002: Any other DRIVING FACTOR | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | |
C1P002: Any other DRIVING FACTOR (if any) | |||||||
C1P003: Administrative barriers | |||||||
C1P003: Difficulty in the coordination of high number of partners and authorities | 4 - Important | 2 - Slightly important | 5 - Very important | 3 - Moderately important | 4 - Important | 4 - Important | 4 - Important |
C1P003: Lack of good cooperation and acceptance among partners | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 4 - Important | 3 - Moderately important | 4 - Important |
C1P003: Lack of public participation | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 4 - Important | 3 - Moderately important | 4 - Important | 4 - Important |
C1P003: Lack of institutions/mechanisms to disseminate information | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 3 - Moderately important |
C1P003:Long and complex procedures for authorization of project activities | 5 - Very important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 3 - Moderately important |
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy | 4 - Important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 3 - Moderately important |
C1P003: Complicated and non-comprehensive public procurement | 4 - Important | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 3 - Moderately important |
C1P003: Fragmented and or complex ownership structure | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 4 - Important | 4 - Important | 3 - Moderately important |
C1P003: City administration & cross-sectoral attitude/approaches (silos) | 3 - Moderately important | 2 - Slightly important | 4 - Important | 2 - Slightly important | 5 - Very important | 2 - Slightly important | 3 - Moderately important |
C1P003: Lack of internal capacities to support energy transition | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 3 - Moderately important |
C1P003: Any other Administrative BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | |
C1P003: Any other Administrative BARRIER (if any) | |||||||
C1P004: Policy barriers | |||||||
C1P004: Lack of long-term and consistent energy plans and policies | 4 - Important | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 2 - Slightly important | 1 - Unimportant |
C1P004: Lacking or fragmented local political commitment and support on the long term | 4 - Important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 5 - Very important | 3 - Moderately important | 1 - Unimportant |
C1P004: Lack of Cooperation & support between national-regional-local entities | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 4 - Important | 4 - Important | 2 - Slightly important | 1 - Unimportant |
C1P004: Any other Political BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P004: Any other Political BARRIER (if any) | |||||||
C1P005: Legal and Regulatory barriers | |||||||
C1P005: Inadequate regulations for new technologies | 4 - Important | 3 - Moderately important | 5 - Very important | 2 - Slightly important | 4 - Important | 4 - Important | 4 - Important |
C1P005: Regulatory instability | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important | 2 - Slightly important | 3 - Moderately important |
C1P005: Non-effective regulations | 4 - Important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important |
C1P005: Unfavorable local regulations for innovative technologies | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 4 - Important | 5 - Very important | 4 - Important |
C1P005: Building code and land-use planning hindering innovative technologies | 4 - Important | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important |
C1P005: Insufficient or insecure financial incentives | 4 - Important | 2 - Slightly important | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important |
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation | 4 - Important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | 3 - Moderately important |
C1P005: Shortage of proven and tested solutions and examples | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 3 - Moderately important | |
C1P005: Any other Legal and Regulatory BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | |
C1P005: Any other Legal and Regulatory BARRIER (if any) | |||||||
C1P006: Environmental barriers | |||||||
C1P006: Environmental barriers | 2 - Slightly important | ||||||
C1P007: Technical barriers | |||||||
C1P007: Lack of skilled and trained personnel | 4 - Important | 2 - Slightly important | 2 - Slightly important | 3 - Moderately important | 4 - Important | 4 - Important | 4 - Important |
C1P007: Deficient planning | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | 4 - Important | 4 - Important | 4 - Important | 4 - Important |
C1P007: Retrofitting work in dwellings in occupied state | 4 - Important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 4 - Important | 4 - Important | 1 - Unimportant |
C1P007: Lack of well-defined process | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 3 - Moderately important | 4 - Important |
C1P007: Inaccuracy in energy modelling and simulation | 4 - Important | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant |
C1P007: Lack/cost of computational scalability | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important |
C1P007: Grid congestion, grid instability | 4 - Important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 5 - Very important | 3 - Moderately important | 4 - Important |
C1P007: Negative effects of project intervention on the natural environment | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important |
C1P007: Energy retrofitting work in dense and/or historical urban environment | 5 - Very important | 1 - Unimportant | 5 - Very important | 5 - Very important | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P007: Difficult definition of system boundaries | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P007: Any other Thecnical BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | |
C1P007: Any other Thecnical BARRIER (if any) | |||||||
C1P008: Social and Cultural barriers | |||||||
C1P008: Inertia | 4 - Important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important | 4 - Important | 3 - Moderately important |
C1P008: Lack of values and interest in energy optimization measurements | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 5 - Very important | 3 - Moderately important | 3 - Moderately important |
C1P008: Low acceptance of new projects and technologies | 5 - Very important | 2 - Slightly important | 2 - Slightly important | 2 - Slightly important | 5 - Very important | 2 - Slightly important | 4 - Important |
C1P008: Difficulty of finding and engaging relevant actors | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 4 - Important | 4 - Important | 3 - Moderately important |
C1P008: Lack of trust beyond social network | 4 - Important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 5 - Very important | 3 - Moderately important | 3 - Moderately important |
C1P008: Rebound effect | 4 - Important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 4 - Important | 3 - Moderately important | 3 - Moderately important |
C1P008: Hostile or passive attitude towards environmentalism | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important |
C1P008: Exclusion of socially disadvantaged groups | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important |
C1P008: Non-energy issues are more important and urgent for actors | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 4 - Important | 3 - Moderately important |
C1P008: Hostile or passive attitude towards energy collaboration | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | |
C1P008: Any other Social BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | |
C1P008: Any other Social BARRIER (if any) | |||||||
C1P009: Information and Awareness barriers | |||||||
C1P009: Insufficient information on the part of potential users and consumers | 2 - Slightly important | 4 - Important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 3 - Moderately important | |
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts | 2 - Slightly important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | |
C1P009: Lack of awareness among authorities | 1 - Unimportant | 2 - Slightly important | 3 - Moderately important | 5 - Very important | 2 - Slightly important | 3 - Moderately important | |
C1P009: Information asymmetry causing power asymmetry of established actors | 1 - Unimportant | 1 - Unimportant | 4 - Important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | |
C1P009: High costs of design, material, construction, and installation | 3 - Moderately important | 4 - Important | 4 - Important | 5 - Very important | 4 - Important | 3 - Moderately important | |
C1P009: Any other Information and Awareness BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | |
C1P009: Any other Information and Awareness BARRIER (if any) | |||||||
C1P010: Financial barriers | |||||||
C1P010: Hidden costs | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 2 - Slightly important | 4 - Important | |
C1P010: Insufficient external financial support and funding for project activities | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | |
C1P010: Economic crisis | 1 - Unimportant | 3 - Moderately important | 4 - Important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | |
C1P010: Risk and uncertainty | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | 5 - Very important | 4 - Important | 3 - Moderately important | |
C1P010: Lack of consolidated and tested business models | 3 - Moderately important | 1 - Unimportant | 4 - Important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | |
C1P010: Limited access to capital and cost disincentives | 2 - Slightly important | 1 - Unimportant | 4 - Important | 5 - Very important | 2 - Slightly important | 3 - Moderately important | |
C1P010: Any other Financial BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | |
C1P010: Any other Financial BARRIER (if any) | |||||||
C1P011: Market barriers | |||||||
C1P011: Split incentives | 2 - Slightly important | 1 - Unimportant | 4 - Important | 4 - Important | 2 - Slightly important | 3 - Moderately important | |
C1P011: Energy price distortion | 2 - Slightly important | 1 - Unimportant | 4 - Important | 4 - Important | 3 - Moderately important | 5 - Very important | |
C1P011: Energy market concentration, gatekeeper actors (DSOs) | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | |
C1P011: Any other Market BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | |
C1P011: Any other Market BARRIER (if any) | |||||||
C1P012: Stakeholders involved | |||||||
C1P012: Government/Public Authorities |
|
|
|
| |||
C1P012: Research & Innovation |
|
|
|
|
| ||
C1P012: Financial/Funding |
|
|
|
|
| ||
C1P012: Analyst, ICT and Big Data |
|
|
|
|
| ||
C1P012: Business process management |
|
|
|
|
| ||
C1P012: Urban Services providers |
|
|
|
|
| ||
C1P012: Real Estate developers |
|
|
|
|
| ||
C1P012: Design/Construction companies |
|
|
|
|
| ||
C1P012: End‐users/Occupants/Energy Citizens |
|
|
|
|
| ||
C1P012: Social/Civil Society/NGOs |
|
|
|
|
| ||
C1P012: Industry/SME/eCommerce |
|
|
|
|
| ||
C1P012: Other | |||||||
C1P012: Other (if any) | |||||||
Summary |
Authors (framework concept)
Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)
Contributors (to the content)
Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)
Implemented by
Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)