Filters:
NameProjectTypeCompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Rymdgatan’s Residential Portfolio in Borlänge, Sweden PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Oulu, Kaukovainio
City of Espoo, Espoonlahti district, Lippulaiva block
Leipzig, Baumwollspinnerei district
Rymdgatan's Residential Portfolio in Borlänge, Sweden
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityOulu, KaukovainioCity of Espoo, Espoonlahti district, Lippulaiva blockLeipzig, Baumwollspinnerei districtRymdgatan's Residential Portfolio in Borlänge, Sweden
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesyesno
PED relevant case studyyesnononoyes
PED Lab.nonononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesnoyesyes
Annual energy surplusnonononoyes
Energy communityyesnononoyes
Circularitynoyesnonono
Air quality and urban comfortyesnonoyesno
Electrificationyesyesnoyesyes
Net-zero energy costnonononono
Net-zero emissionnonononono
Self-sufficiency (energy autonomous)nonononono
Maximise self-sufficiencynonoyesnoyes
Othernononoyesno
Other (A1P004)Net-zero emission; Annual energy surplus
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseIn operationIn operationImplementation PhasePlanning Phase
A1P006: Start Date
A1P006: Start date06/18
A1P007: End Date
A1P007: End date03/22
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • Open data city platform – different dashboards
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
    • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf,
    • www.lippulaiva.fi
        A1P011: Geographic coordinates
        X Coordinate (longitude):23.81458825.51759508409350724.654312.31845860.486609
        Y Coordinate (latitude):38.07734964.9928809817313260.149151.32649215.394495
        A1P012: Country
        A1P012: CountryGreeceFinlandFinlandGermanySweden
        A1P013: City
        A1P013: CityMunicipality of KifissiaOuluEspooLeipzigBorlänge
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CsaDfcDfbDfbDsb
        A1P015: District boundary
        A1P015: District boundaryVirtualGeographicFunctionalGeographic
        OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodRegional (close to virtual)Geographic
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:MixedPrivateMixed
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Single OwnerSingle OwnerSingle Owner
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED69210
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]19700112000170003700
        A1P020: Total ground area
        A1P020: Total ground area [m²]60000165000300009945
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area00110
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenoyesyesnono
        A1P022a: Add the value in EUR if available [EUR]
        A1P022b: Financing - PRIVATE - ESCO schemenonononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernonononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnonononono
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingnonononono
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingnonononono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnoyesnonono
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernonononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnoyesyesnono
        A1P022i: Add the value in EUR if available [EUR]308875
        A1P022j: Financing - RESEARCH FUNDING - Nationalnonononono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernonononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: Other
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Positive externalities,
        • Boosting local and sustainable production
        • Job creation,
        • Positive externalities,
        • Boosting local businesses
        • Positive externalities,
        • Boosting local businesses,
        • Boosting consumption of local and sustainable products
        A1P023: OtherDeveloping and demonstrating new solutionsSustainable and replicable business models regarding renewable energy systems
        A1P024: More comments:
        A1P024: More comments:The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVs
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]5
        Contact person for general enquiries
        A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaSamuli RinneElina EkelundSimon BaumJingchun Shen
        A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamCity of OuluCitycon OyjCENERO Energy GmbHHögskolan Dalarna
        A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesSME / IndustryOtherResearch Center / University
        A1P028: OtherCENERO Energy GmbH
        A1P029: Emailgiavasoglou@kifissia.grsamuli.rinne@ouka.fiElina.ekelund@citycon.comsib@cenero.dejih@du.se
        Contact person for other special topics
        A1P030: NameStavros Zapantis - vice mayorSamuli RinneElina EkelundSimon BaumXingxing Zhang
        A1P031: Emailstavros.zapantis@gmail.comsamuli.rinne@ouka.fiElina.ekelund@citycon.comsib@cenero.dexza@du.se
        Pursuant to the General Data Protection RegulationYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Water use,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Construction materials
        A2P001: Other
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsDifferent kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.Energy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider ElectricLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREM
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoYesNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceNoYesYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoNoNo
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationNot included. However, there is a charging place for a shared EV in one building.Mobility is not included in the energy model.
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.15.51.650.6777
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.25.80.03656
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]00
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesyesyesyesno
        A2P011: PV - specify production in GWh/annum [GWh/annum]0.10.54
        A2P011: Windnonononono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydrononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnonononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnonononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnonononoyes
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
        A2P011: Othernonononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnonoyesnono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]5
        A2P012: Solar Thermalnonononono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatnonononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPnoyesnonono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.2
        A2P012: Biomass_peat_heatnonononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnonononoyes
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
        A2P012: Biomass_firewood_thnonononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernonononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notesHeat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]2.311.32.4210.318
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]5.760.2055
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]000
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnonononono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]0
        A2P017: Coalnonononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]0
        A2P017: Oilnonononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]0
        A2P017: Othernonononoyes
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnoyesnonono
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
        A2P018: Windnoyesnonono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydronoyesnonono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnoyesnonono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnoyesnonono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnonononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernonoyesnoyes
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]5.260.187
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnonononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnonononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnoyesnonono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
        A2P019: Waste heat+HPnonononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnonononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnonononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnonononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernonononoyes
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary03.28571428571431.053231939163500.53839572192513
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]006.93
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Securitynone
        A2P022: HealthEncouraging a healthy lifestylethermal comfort diagram
        A2P022: Educationnone
        A2P022: MobilityModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV chargingnone
        A2P022: EnergyFinal energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reductionOn-site energy ratioapplynormalized CO2/GHG & Energy intensity
        A2P022: Water
        A2P022: Economic developmentTotal investments, Payback time, Economic value of savingscost of excess emissions
        A2P022: Housing and CommunityDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy poverty
        A2P022: WasteRecycling rate
        A2P022: OtherSmart Cities strategies, Quality of open data
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsnoyesyesnoyes
        A2P023: Solar thermal collectorsnonononoyes
        A2P023: Wind Turbinesnonononono
        A2P023: Geothermal energy systemnonoyesnoyes
        A2P023: Waste heat recoverynoyesyesnoyes
        A2P023: Waste to energynonononono
        A2P023: Polygenerationnonononono
        A2P023: Co-generationnoyesnonono
        A2P023: Heat Pumpnoyesnonoyes
        A2P023: Hydrogennonononono
        A2P023: Hydropower plantnonononono
        A2P023: Biomassnoyesnonono
        A2P023: Biogasnonononono
        A2P023: Other
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesnoyes
        A2P024: Energy management systemnoyesyesnono
        A2P024: Demand-side managementnonononono
        A2P024: Smart electricity gridnonoyesnono
        A2P024: Thermal Storagenoyesyesnoyes
        A2P024: Electric Storagenonoyesnono
        A2P024: District Heating and Coolingnoyesnonoyes
        A2P024: Smart metering and demand-responsive control systemsnonononono
        A2P024: P2P – buildingsnonononono
        A2P024: Other
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnoyesnonoyes
        A2P025: Energy efficiency measures in historic buildingsnonononono
        A2P025: High-performance new buildingsnoyesyesnono
        A2P025: Smart Public infrastructure (e.g. smart lighting)nonoyesnono
        A2P025: Urban data platformsnoyesnonono
        A2P025: Mobile applications for citizensnonononono
        A2P025: Building services (HVAC & Lighting)noyesyesnoyes
        A2P025: Smart irrigationnonononono
        A2P025: Digital tracking for waste disposalnonononono
        A2P025: Smart surveillancenonononono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)noyesnonono
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesyesnono
        A2P026: e-Mobilitynoyesyesnono
        A2P026: Soft mobility infrastructures and last mile solutionsnoyesnonono
        A2P026: Car-free areanonononono
        A2P026: OtherLocal transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notesTest-Concept for bidirectional charging.
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesYesNo
        A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingThe obligatory buildijng energy classificationEnergy Performance Certificate => Energy efficiency class B (2018 version)
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoYesNo
        A2P029: If yes, please specify and/or enter notesLEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD)
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC)
        • Smart cities strategies,
        • Urban Renewal Strategies,
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyCarbon neutrality by 2035Relevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels.The study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Biogas
        A3P003: Other
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesDeveloping and demonstrating solutions for carbon neutrality- Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district.In our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviourE. g. visualizing energy and water consumptionFor Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners.While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Open data business models,
        • Innovative business models,
        • PPP models,
        • Life Cycle Cost,
        • Circular economy models
        • Innovative business models
        • Innovative business models,
        • Other
        • Open data business models,
        • Life Cycle Cost,
        • Circular economy models,
        • Local trading
        A3P006: Otheroperational savings through efficiency measures
        A3P007: Social models
        A3P007: Social models
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen Social Research,
        • Policy Forums,
        • Quality of Life,
        • Strategies towards social mix,
        • Affordability,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Co-creation / Citizen engagement strategies
        • Behavioural Change / End-users engagement
        • Strategies towards (local) community-building,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Affordability,
        • Digital Inclusion
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning,
        • District Energy plans,
        • City Vision 2050,
        • SECAP Updates
        • Building / district Certification
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • District Energy plans,
        • Building / district Certification
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral,
        • Net zero carbon footprint
        • Other
        • Other
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Life Cycle approach,
        • Sustainable Urban drainage systems (SUDS)
        A3P009: OtherCarbon free in terms of energyPositive Energy Balance for the demo site
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspects- Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionThe original idea is that the area produces at least as much it consumes.Lippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production.The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentDeveloping systems towards carbon neutrality. Also urban renewal.- Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholdersBorlänge city has committed to become the carbon-neutral city by 2030.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaSuburban areaUrban areaUrban area
        B1P004: Type of district
        B2P004: Type of district
        • New construction,
        • Renovation
        • New construction
        • Renovation
        B1P005: Case Study Context
        B1P005: Case Study Context
        • New Development,
        • Retrofitting Area
        • Re-use / Transformation Area,
        • New Development
        • Preservation Area
        • Re-use / Transformation Area,
        • Retrofitting Area
        B1P006: Year of construction
        B1P006: Year of construction20221990
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential3500100
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential3500100
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential6
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential6
        B1P011: Population density before intervention
        B1P011: Population density before intervention00000
        B1P012: Population density after intervention
        B1P012: Population density after intervention00.058333333333333000.010658622423328
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnoyesnonoyes
        B1P013 - Residential: Specify the sqm [m²]4360
        B1P013: Officenonononono
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynonononono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnoyesyesnono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnonononono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasnoyesyesnono
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnoyesnonono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnonononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernonononoyes
        B1P013 - Other: Specify the sqm [m²]706
        B1P014: Building and Land Use after intervention
        B1P014: Residentialnoyesyesnoyes
        B1P014 - Residential: Specify the sqm [m²]4360
        B1P014: Officenonononono
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynonononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnoyesyesnono
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnonononono
        B1P014 - Institutional: Specify the sqm [m²]
        B1P014: Natural areasnoyesnonono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnoyesnonono
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnonononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernonononoyes
        B1P014 - Other: Specify the sqm [m²]706
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definition
        B2P002: Installation life time
        B2P002: Installation life time
        B2P003: Scale of action
        B2P003: Scale
        B2P004: Operator of the installation
        B2P004: Operator of the installation
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED Lab
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production5 - Very important5 - Very important4 - Important4 - Important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important2 - Slightly important1 - Unimportant5 - Very important
        C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important2 - Slightly important4 - Important3 - Moderately important
        C1P001: Storage systems and E-mobility market penetration1 - Unimportant4 - Important3 - Moderately important
        C1P001: Decreasing costs of innovative materials4 - Important3 - Moderately important1 - Unimportant4 - Important
        C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important3 - Moderately important5 - Very important5 - Very important
        C1P001: The ability to predict Multiple Benefits4 - Important4 - Important4 - Important
        C1P001: The ability to predict the distribution of benefits and impacts2 - Slightly important4 - Important4 - Important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important3 - Moderately important3 - Moderately important5 - Very important
        C1P001: Social acceptance (top-down)5 - Very important5 - Very important2 - Slightly important5 - Very important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important2 - Slightly important2 - Slightly important4 - Important
        C1P001: Presence of integrated urban strategies and plans3 - Moderately important4 - Important1 - Unimportant5 - Very important
        C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important4 - Important1 - Unimportant5 - Very important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important3 - Moderately important1 - Unimportant4 - Important
        C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important5 - Very important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important4 - Important1 - Unimportant2 - Slightly important
        C1P001: Any other UNLOCKING FACTORS2 - Slightly important1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need4 - Important1 - Unimportant5 - Very important5 - Very important
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important4 - Important5 - Very important
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P002: Urban re-development of existing built environment3 - Moderately important5 - Very important1 - Unimportant4 - Important
        C1P002: Economic growth need2 - Slightly important2 - Slightly important3 - Moderately important4 - Important
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P002: Territorial and market attractiveness2 - Slightly important5 - Very important2 - Slightly important1 - Unimportant
        C1P002: Energy autonomy/independence5 - Very important3 - Moderately important4 - Important2 - Slightly important
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important2 - Slightly important4 - Important4 - Important
        C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant2 - Slightly important4 - Important
        C1P003: Lack of public participation3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important2 - Slightly important1 - Unimportant4 - Important
        C1P003:Long and complex procedures for authorization of project activities5 - Very important3 - Moderately important1 - Unimportant5 - Very important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important1 - Unimportant4 - Important
        C1P003: Complicated and non-comprehensive public procurement4 - Important2 - Slightly important1 - Unimportant5 - Very important
        C1P003: Fragmented and or complex ownership structure3 - Moderately important2 - Slightly important1 - Unimportant4 - Important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important
        C1P003: Lack of internal capacities to support energy transition3 - Moderately important2 - Slightly important2 - Slightly important5 - Very important
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies4 - Important2 - Slightly important1 - Unimportant5 - Very important
        C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important3 - Moderately important1 - Unimportant5 - Very important
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important3 - Moderately important2 - Slightly important4 - Important
        C1P005: Regulatory instability3 - Moderately important2 - Slightly important3 - Moderately important2 - Slightly important
        C1P005: Non-effective regulations4 - Important2 - Slightly important4 - Important2 - Slightly important
        C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant2 - Slightly important4 - Important
        C1P005: Building code and land-use planning hindering innovative technologies4 - Important2 - Slightly important2 - Slightly important2 - Slightly important
        C1P005: Insufficient or insecure financial incentives4 - Important2 - Slightly important2 - Slightly important3 - Moderately important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important4 - Important1 - Unimportant2 - Slightly important
        C1P005: Shortage of proven and tested solutions and examples2 - Slightly important3 - Moderately important4 - Important
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriers2 - Slightly important
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel4 - Important2 - Slightly important4 - Important4 - Important
        C1P007: Deficient planning3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
        C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant4 - Important4 - Important
        C1P007: Lack of well-defined process4 - Important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P007: Inaccuracy in energy modelling and simulation4 - Important3 - Moderately important2 - Slightly important2 - Slightly important
        C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Grid congestion, grid instability4 - Important1 - Unimportant1 - Unimportant5 - Very important
        C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Difficult definition of system boundaries3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia4 - Important2 - Slightly important1 - Unimportant2 - Slightly important
        C1P008: Lack of values and interest in energy optimization measurements5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P008: Low acceptance of new projects and technologies5 - Very important2 - Slightly important3 - Moderately important5 - Very important
        C1P008: Difficulty of finding and engaging relevant actors5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P008: Lack of trust beyond social network4 - Important1 - Unimportant1 - Unimportant5 - Very important
        C1P008: Rebound effect4 - Important1 - Unimportant3 - Moderately important4 - Important
        C1P008: Hostile or passive attitude towards environmentalism5 - Very important2 - Slightly important2 - Slightly important3 - Moderately important
        C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important
        C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important3 - Moderately important4 - Important3 - Moderately important
        C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important2 - Slightly important3 - Moderately important
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers2 - Slightly important3 - Moderately important3 - Moderately important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts2 - Slightly important1 - Unimportant3 - Moderately important
        C1P009: Lack of awareness among authorities1 - Unimportant1 - Unimportant5 - Very important
        C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant3 - Moderately important5 - Very important
        C1P009: High costs of design, material, construction, and installation3 - Moderately important4 - Important5 - Very important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs1 - Unimportant2 - Slightly important5 - Very important
        C1P010: Insufficient external financial support and funding for project activities2 - Slightly important3 - Moderately important5 - Very important
        C1P010: Economic crisis1 - Unimportant4 - Important5 - Very important
        C1P010: Risk and uncertainty3 - Moderately important3 - Moderately important5 - Very important
        C1P010: Lack of consolidated and tested business models3 - Moderately important4 - Important5 - Very important
        C1P010: Limited access to capital and cost disincentives2 - Slightly important3 - Moderately important5 - Very important
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives2 - Slightly important3 - Moderately important4 - Important
        C1P011: Energy price distortion2 - Slightly important3 - Moderately important4 - Important
        C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant3 - Moderately important3 - Moderately important
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Monitoring/operation/management
        C1P012: Research & Innovation
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation
        • Planning/leading
        C1P012: Financial/Funding
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • None
        C1P012: Analyst, ICT and Big Data
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • None
        C1P012: Business process management
        • Planning/leading,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • None
        C1P012: Urban Services providers
        • Planning/leading
        • None
        • None
        C1P012: Real Estate developers
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation
        C1P012: Design/Construction companies
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • None
        C1P012: End‐users/Occupants/Energy Citizens
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        C1P012: Social/Civil Society/NGOs
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Monitoring/operation/management
        C1P012: Industry/SME/eCommerce
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        C1P012: Other
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)