Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Uncompare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Uncompare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Uncompare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Halmstad, Fyllinge
Luxembourg, Betzdorf
Riga, Ķīpsala, RTU smart student city
Vidin, Himik and Bononia
Istanbul, Ozyegin University Campus
Maia, Sobreiro Social Housing
District Heating Pozo Barredo, Mieres
Graz, Reininghausgründe
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityHalmstad, FyllingeLuxembourg, BetzdorfRiga, Ķīpsala, RTU smart student cityVidin, Himik and BononiaIstanbul, Ozyegin University CampusMaia, Sobreiro Social HousingDistrict Heating Pozo Barredo, MieresGraz, Reininghausgründe
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononoyesyesnononoyes
PED relevant case studyyesyesyesnonoyesnoyesno
PED Lab.nonononononoyesnono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynonoyesyesyesyesyesyesyes
Annual energy surplusnonoyesnoyesnononono
Energy communityyesyesyesyesnonononono
Circularitynonoyesnononononono
Air quality and urban comfortyesnoyesnonoyesnonono
Electrificationyesnoyesnonoyesnonono
Net-zero energy costnonononononononono
Net-zero emissionnonononononononono
Self-sufficiency (energy autonomous)nononoyesnonononono
Maximise self-sufficiencynononoyesnonoyesnono
Othernononononoyesnoyesno
Other (A1P004)almost nZEB districtEnergy efficient; Carbon-free
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseImplementation PhasePlanning PhasePlanning PhaseImplementation PhasePlanning PhaseCompletedImplementation Phase
A1P006: Start Date
A1P006: Start date01/2106/2301/2412/1810/2410/2112/172019
A1P007: End Date
A1P007: End date01/3004/2612/2612/3010/2810/2404/192025
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
            • E. Rainer, H. Schnitzer, T. Mach, T. Wieland, M. Reiter, L. Fickert, E. Schmautzer, A. Passer, H. Oblak, H. Kreiner, R. Lazar, M. Duschek, et al. (2015): Rahmenplan Energy City Graz-Reininghaus – Subprojekt 2 des Leitprojektes „ECR Energy City Graz – Reininghaus Online: Rahmenplan Energy City Graz-Reininghaus - Haus der Zukunft (nachhaltigwirtschaften.at),
            • H.Schnitzer et al. (2016): Arbeiten und Wohnen in der Smart City Reininghaus, Online: Arbeiten und Wohnen in Graz Reininghaus - Smartcities
            A1P011: Geographic coordinates
            X Coordinate (longitude):23.81458812.920546.36160224.0816833922.882629.258300-8.373557-5.77497115.407440
            Y Coordinate (latitude):38.07734956.6519449.68277456.9524595643.993641.03060041.13580443.24314247.0607
            A1P012: Country
            A1P012: CountryGreeceSwedenLuxembourgLatviaBulgariaTurkeyPortugalSpainAustria
            A1P013: City
            A1P013: CityMunicipality of KifissiaHalmstadBetzdorfRigaVidinIstanbulMaiaMieresGraz
            A1P014: Climate Zone (Köppen Geiger classification)
            A1P014: Climate Zone (Köppen Geiger classification).CsaDwbCfbCfbCfaCfaCsbCsbDfb
            A1P015: District boundary
            A1P015: District boundaryVirtualGeographicGeographicGeographicGeographicGeographicVirtualGeographic
            OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
            A1P016: Ownership of the case study/PED Lab
            A1P016: Ownership of the case study/PED Lab:MixedPublicPublicMixedPrivatePublicPrivateMixed
            A1P017: Ownership of the land / physical infrastructure
            A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple Owners
            A1P018: Number of buildings in PED
            A1P018: Number of buildings in PED2502415741522100
            A1P019: Conditioned space
            A1P019: Conditioned space [m²]173.817000098759.53
            A1P020: Total ground area
            A1P020: Total ground area [m²]119264195234.80285.4001000000
            A1P021: Floor area ratio: Conditioned space / total ground area
            A1P021: Floor area ratio: Conditioned space / total ground area000110000
            A1P022: Financial schemes
            A1P022a: Financing - PRIVATE - Real estatenoyesnononoyesnonoyes
            A1P022a: Add the value in EUR if available [EUR]
            A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
            A1P022b: Add the value in EUR if available [EUR]
            A1P022c: Financing - PRIVATE - Othernonononononoyesnono
            A1P022c: Add the value in EUR if available [EUR]
            A1P022d: Financing - PUBLIC - EU structural fundingnonononononononono
            A1P022d: Add the value in EUR if available [EUR]
            A1P022e: Financing - PUBLIC - National fundingnonononoyesnoyesnoyes
            A1P022e: Add the value in EUR if available [EUR]
            A1P022f: Financing - PUBLIC - Regional fundingnonononononoyesnono
            A1P022f: Add the value in EUR if available [EUR]
            A1P022g: Financing - PUBLIC - Municipal fundingnononononononoyesyes
            A1P022g: Add the value in EUR if available [EUR]25000000
            A1P022h: Financing - PUBLIC - Othernonoyesnononononono
            A1P022h: Add the value in EUR if available [EUR]
            A1P022i: Financing - RESEARCH FUNDING - EUnoyesnoyesnoyesyesnono
            A1P022i: Add the value in EUR if available [EUR]7500000
            A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononononono
            A1P022j: Add the value in EUR if available [EUR]
            A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
            A1P022k: Add the value in EUR if available [EUR]
            A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
            A1P022l: Add the value in EUR if available [EUR]
            A1P022: Other
            A1P023: Economic Targets
            A1P023: Economic Targets
            • Boosting local and sustainable production
            • Other
            • Boosting local businesses,
            • Boosting local and sustainable production
            • Positive externalities,
            • Boosting local and sustainable production,
            • Boosting consumption of local and sustainable products
            • Positive externalities,
            • Boosting local and sustainable production
            • Job creation,
            • Boosting local businesses,
            • Boosting consumption of local and sustainable products
            A1P023: Other
            A1P024: More comments:
            A1P024: More comments:In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.The “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning.
            A1P025: Estimated PED case study / PED LAB costs
            A1P025: Estimated PED case study / PED LAB costs [mil. EUR]1
            Contact person for general enquiries
            A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaMarkus OlofsgårdJulien BertucciJudith StiekemaDaniela KostovaCem KeskinAdelina RodriguesChristoph GollnerKatharina Schwarz
            A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamAFRYSNHBMOASCGreen Synergy ClusterCenter for Energy, Environment and Economy, Ozyegin UniversityMaia Municipality (CM Maia) – Energy and Mobility divisionFFGStadtLABOR, Innovationen für urbane Lebensqualität GmbH
            A1P028: AffiliationMunicipality / Public BodiesOtherMunicipality / Public BodiesOtherOtherResearch Center / UniversityMunicipality / Public BodiesOtherSME / Industry
            A1P028: Othernot for profit private organisationCluster
            A1P029: Emailgiavasoglou@kifissia.grmarkus.olofsgard@afry.comjulien.bertucci@snhbm.lujudith@oascities.orgdaniela@greensynergycluster.eucem.keskin@ozyegin.edu.trdscm.adelina@cm-maia.ptchristoph.gollner@ffg.atkatharina.schwarz@stadtlaborgraz.at
            Contact person for other special topics
            A1P030: NameStavros Zapantis - vice mayorM. Pınar MengüçCarolina Gonçalves (AdEPorto)Hans Schnitzer
            A1P031: Emailstavros.zapantis@gmail.compinar.menguc@ozyegin.edu.trcarolinagoncalves@adeporto.euhans.schnitzer@stadtlaborgraz.at
            Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
            A2P001: Fields of application
            A2P001: Fields of application
            • Energy production
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Digital technologies
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Urban comfort (pollution, heat island, noise level etc.),
            • Digital technologies,
            • Water use,
            • Indoor air quality,
            • Construction materials
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Digital technologies
            • Energy efficiency,
            • Energy production
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Digital technologies,
            • Waste management,
            • Indoor air quality,
            • Construction materials
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Urban comfort (pollution, heat island, noise level etc.),
            • Digital technologies
            • Energy efficiency
            • Energy efficiency,
            • Urban comfort (pollution, heat island, noise level etc.),
            • Water use,
            • Indoor air quality,
            • Other
            A2P001: OtherUrban Management; Air Quality
            A2P002: Tools/strategies/methods applied for each of the above-selected fields
            A2P002: Tools/strategies/methods applied for each of the above-selected fieldslink based regulation of electricity gridA suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.LEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste documentEnergy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:Energy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the district
            A2P003: Application of ISO52000
            A2P003: Application of ISO52000NoNoNoYesNoNo
            A2P004: Appliances included in the calculation of the energy balance
            A2P004: Appliances included in the calculation of the energy balanceNoNoYesNoYesYesYes
            A2P005: Mobility included in the calculation of the energy balance
            A2P005: Mobility included in the calculation of the energy balanceYesNoYesYesNoNoYes
            A2P006: Description of how mobility is included (or not included) in the calculation
            A2P006: Description of how mobility is included (or not included) in the calculationThe university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.Not included, the campus is a non car area except emergencies- Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets)
            A2P007: Annual energy demand in buildings / Thermal demand
            A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]8000
            A2P008: Annual energy demand in buildings / Electric Demand
            A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]5000
            A2P009: Annual energy demand for e-mobility
            A2P009: Annual energy demand for e-mobility [GWh/annum]
            A2P010: Annual energy demand for urban infrastructure
            A2P010: Annual energy demand for urban infrastructure [GWh/annum]
            A2P011: Annual renewable electricity production on-site during target year
            A2P011: PVyesyesnononoyesyesnoyes
            A2P011: PV - specify production in GWh/annum [GWh/annum]
            A2P011: Windnononoyesnonononono
            A2P011: Wind - specify production in GWh/annum [GWh/annum]
            A2P011: Hydrononononononononono
            A2P011: Hydro - specify production in GWh/annum [GWh/annum]
            A2P011: Biomass_elnonononononononono
            A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
            A2P011: Biomass_peat_elnonononononononono
            A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
            A2P011: PVT_elnononoyesnonononono
            A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
            A2P011: Othernonononononononono
            A2P011: Other - specify production in GWh/annum [GWh/annum]
            A2P012: Annual renewable thermal production on-site during target year
            A2P012: Geothermalnoyesnonononononoyes
            A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
            A2P012: Solar Thermalnonononononoyesnoyes
            A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
            A2P012: Biomass_heatnononoyesnonononono
            A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
            A2P012: Waste heat+HPnonononononononoyes
            A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
            A2P012: Biomass_peat_heatnonononononononono
            A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
            A2P012: PVT_thnonononononononono
            A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
            A2P012: Biomass_firewood_thnonononononononono
            A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
            A2P012: Othernonononononononono
            A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
            A2P013: Renewable resources on-site - Additional notes
            A2P013: Renewable resources on-site - Additional notesConventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.Groundwater (used for heat pumps)
            A2P014: Annual energy use
            A2P014: Annual energy use [GWh/annum]3.5
            A2P015: Annual energy delivered
            A2P015: Annual energy delivered [GWh/annum]
            A2P016: Annual non-renewable electricity production on-site during target year
            A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
            A2P017: Annual non-renewable thermal production on-site during target year
            A2P017: Gasnononoyesnonononono
            A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Coalnonononononononono
            A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Oilnonononononononono
            A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Othernonononononononono
            A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P018: Annual renewable electricity imports from outside the boundary during target year
            A2P018: PVnononononoyesnonoyes
            A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.00045547
            A2P018: Windnonononononononoyes
            A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
            A2P018: Hydrononononononononoyes
            A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
            A2P018: Biomass_elnonononononononono
            A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: Biomass_peat_elnonononononononono
            A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: PVT_elnonononononononono
            A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: Othernonononononononono
            A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
            A2P019: Annual renewable thermal imports from outside the boundary during target year
            A2P019: Geothermalnonononononononono
            A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Solar Thermalnonononononononoyes
            A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_heatnonononononononoyes
            A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Waste heat+HPnonononononononoyes
            A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_peat_heatnonononononononono
            A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
            A2P019: PVT_thnonononononononono
            A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_firewood_thnonononononononono
            A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Othernonononononononono
            A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
            A2P020: Share of RES on-site / RES outside the boundary
            A2P020: Share of RES on-site / RES outside the boundary000000000
            A2P021: GHG-balance calculated for the PED
            A2P021: GHG-balance calculated for the PED [tCO2/annum]0.036
            A2P022: KPIs related to the PED case study / PED Lab
            A2P022: Safety & Security
            A2P022: Health
            A2P022: Education
            A2P022: Mobilityx
            A2P022: Energyx
            A2P022: Waterx
            A2P022: Economic developmentx
            A2P022: Housing and Communityx
            A2P022: Waste
            A2P022: Other
            A2P023: Technological Solutions / Innovations - Energy Generation
            A2P023: Photovoltaicsnoyesnonoyesyesyesnoyes
            A2P023: Solar thermal collectorsnonononononoyesnono
            A2P023: Wind Turbinesnononononoyesnonono
            A2P023: Geothermal energy systemnonononoyesnonoyesno
            A2P023: Waste heat recoverynonononononononoyes
            A2P023: Waste to energynonononononononono
            A2P023: Polygenerationnonononononononono
            A2P023: Co-generationnononononoyesnonono
            A2P023: Heat Pumpnonononoyesyesyesnoyes
            A2P023: Hydrogennonononononononono
            A2P023: Hydropower plantnonononononononono
            A2P023: Biomassnonononononononono
            A2P023: Biogasnonononononononono
            A2P023: Other
            A2P024: Technological Solutions / Innovations - Energy Flexibility
            A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesyesnoyesyesnoyes
            A2P024: Energy management systemnonoyesyesnoyesyesnono
            A2P024: Demand-side managementnoyesnoyesnoyesnonono
            A2P024: Smart electricity gridnoyesnoyesnonononono
            A2P024: Thermal Storagenononoyesnonononoyes
            A2P024: Electric Storagenonoyesyesyesyesyesnono
            A2P024: District Heating and Coolingnononoyesnoyesnoyesyes
            A2P024: Smart metering and demand-responsive control systemsnoyesnoyesnoyesyesnono
            A2P024: P2P – buildingsnonononononononono
            A2P024: Other
            A2P025: Technological Solutions / Innovations - Energy Efficiency
            A2P025: Deep Retrofittingnonononoyesnoyesnono
            A2P025: Energy efficiency measures in historic buildingsnonononononononono
            A2P025: High-performance new buildingsnonoyesnonoyesnonoyes
            A2P025: Smart Public infrastructure (e.g. smart lighting)nonononononoyesnoyes
            A2P025: Urban data platformsnononoyesnonononono
            A2P025: Mobile applications for citizensnononoyesnonononoyes
            A2P025: Building services (HVAC & Lighting)nonoyesyesnoyesyesnono
            A2P025: Smart irrigationnononononoyesnonoyes
            A2P025: Digital tracking for waste disposalnonononononoyesnono
            A2P025: Smart surveillancenononononoyesnonono
            A2P025: Other
            A2P026: Technological Solutions / Innovations - Mobility
            A2P026: Efficiency of vehicles (public and/or private)nonononononoyesnoyes
            A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonononononononoyes
            A2P026: e-Mobilitynonoyesnonoyesyesnoyes
            A2P026: Soft mobility infrastructures and last mile solutionsnononononoyesnonoyes
            A2P026: Car-free areanononononoyesnonoyes
            A2P026: Other
            A2P027: Mobility strategies - Additional notes
            A2P027: Mobility strategies - Additional notes- Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District management
            A2P028: Energy efficiency certificates
            A2P028: Energy efficiency certificatesNoYesNoYesYesYes
            A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingThe Municipal Buildings have an energy certificate, according to the Portuguese legislation.Energieausweis mandatory if buildings/ flats/ apartments are sold
            A2P029: Any other building / district certificates
            A2P029: Any other building / district certificatesNoYesNoYesNoYes
            A2P029: If yes, please specify and/or enter notesLEED BD+C, LEED NC CAMPUSKlimaaktiv standard  Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/gold
            A3P001: Relevant city /national strategy
            A3P001: Relevant city /national strategy
            • Energy master planning (SECAP, etc.),
            • Promotion of energy communities (REC/CEC)
            • Promotion of energy communities (REC/CEC)
            • Smart cities strategies,
            • Promotion of energy communities (REC/CEC),
            • Climate change adaption plan/strategy (e.g. Climate City contract),
            • National / international city networks addressing sustainable urban development and climate neutrality
            • Energy master planning (SECAP, etc.),
            • New development strategies
            • Smart cities strategies,
            • Energy master planning (SECAP, etc.),
            • Climate change adaption plan/strategy (e.g. Climate City contract),
            • National / international city networks addressing sustainable urban development and climate neutrality
            • Urban Renewal Strategies,
            • Energy master planning (SECAP, etc.),
            • Promotion of energy communities (REC/CEC),
            • Climate change adaption plan/strategy (e.g. Climate City contract)
            • Urban Renewal Strategies
            • Smart cities strategies,
            • Energy master planning (SECAP, etc.),
            • Climate change adaption plan/strategy (e.g. Climate City contract),
            • National / international city networks addressing sustainable urban development and climate neutrality
            A3P002: Quantitative targets included in the city / national strategy
            A3P002: Quantitative targets included in the city / national strategyCity level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supply
            A3P003: Strategies towards decarbonization of the gas grid
            A3P003: Strategies towards decarbonization of the gas grid
            • Electrification of Heating System based on Heat Pumps
            • Electrification of Heating System based on Heat Pumps,
            • Electrification of Cooking Methods
            • Other
            • Electrification of Heating System based on Heat Pumps,
            • Electrification of Cooking Methods,
            • Biogas
            A3P003: OtherBoiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible PricingAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.
            A3P004: Identification of needs and priorities
            A3P004: Identification of needs and prioritiesCarbon and Energy NeutralityReininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared offices
            A3P005: Sustainable behaviour
            A3P005: Sustainable behaviourUnder LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.- citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus.
            A3P006: Economic strategies
            A3P006: Economic strategies
            • Local trading
            • Open data business models,
            • Innovative business models,
            • Demand management Living Lab
            • Innovative business models,
            • PPP models,
            • Existing incentives
            • Innovative business models
            • PPP models,
            • Local trading
            A3P006: Other
            A3P007: Social models
            A3P007: Social models
            • Behavioural Change / End-users engagement,
            • Citizen/owner involvement in planning and maintenance
            • Affordability
            • Strategies towards (local) community-building,
            • Co-creation / Citizen engagement strategies
            • Co-creation / Citizen engagement strategies,
            • Behavioural Change / End-users engagement,
            • Quality of Life,
            • Prevention of energy poverty
            • Co-creation / Citizen engagement strategies,
            • Prevention of energy poverty,
            • Digital Inclusion,
            • Citizen/owner involvement in planning and maintenance,
            • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
            • Strategies towards (local) community-building,
            • Co-creation / Citizen engagement strategies,
            • Behavioural Change / End-users engagement,
            • Social incentives,
            • Quality of Life,
            • Affordability,
            • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
            A3P007: Other
            A3P008: Integrated urban strategies
            A3P008: Integrated urban strategies
            • Strategic urban planning
            • Building / district Certification
            • Digital twinning and visual 3D models
            • Strategic urban planning,
            • City Vision 2050,
            • SECAP Updates
            • City Vision 2050,
            • SECAP Updates,
            • Building / district Certification
            • City Vision 2050,
            • SECAP Updates,
            • Building / district Certification
            • Strategic urban planning,
            • City Vision 2050,
            • Building / district Certification
            A3P008: Other
            A3P009: Environmental strategies
            A3P009: Environmental strategies
            • Energy Neutral,
            • Carbon-free
            • Energy Neutral
            • Pollutants Reduction,
            • Greening strategies
            • Energy Neutral,
            • Low Emission Zone,
            • Net zero carbon footprint,
            • Greening strategies,
            • Cool Materials
            • Energy Neutral,
            • Net zero carbon footprint,
            • Pollutants Reduction
            • Carbon-free
            • Pollutants Reduction,
            • Greening strategies,
            • Sustainable Urban drainage systems (SUDS),
            • Nature Based Solutions (NBS)
            A3P009: Other
            A3P010: Legal / Regulatory aspects
            A3P010: Legal / Regulatory aspectsISO 45001, ISO 14001, ISO 50001, Zero Waste PolicyMobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city.
            B1P001: PED/PED relevant concept definition
            B1P001: PED/PED relevant concept definitionExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.The campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.Reininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.
            B1P002: Motivation behind PED/PED relevant project development
            B1P002: Motivation behind PED/PED relevant project developmentExpected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.The purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.The Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well.
            B1P003: Environment of the case study area
            B2P003: Environment of the case study areaSuburban areaRuralUrban areaUrban areaSuburban areaSuburban areaUrban area
            B1P004: Type of district
            B2P004: Type of district
            • New construction
            • New construction,
            • Renovation
            • Renovation
            • Renovation
            • Renovation
            • New construction
            B1P005: Case Study Context
            B1P005: Case Study Context
            • New Development
            • New Development
            • Retrofitting Area
            • Retrofitting Area
            • Retrofitting Area
            • New Development
            B1P006: Year of construction
            B1P006: Year of construction20242025
            B1P007: District population before intervention - Residential
            B1P007: District population before intervention - Residential0
            B1P008: District population after intervention - Residential
            B1P008: District population after intervention - Residential10000
            B1P009: District population before intervention - Non-residential
            B1P009: District population before intervention - Non-residential98000
            B1P010: District population after intervention - Non-residential
            B1P010: District population after intervention - Non-residential9800
            B1P011: Population density before intervention
            B1P011: Population density before intervention0000034000
            B1P012: Population density after intervention
            B1P012: Population density after intervention0000034.337771548704000.01
            B1P013: Building and Land Use before intervention
            B1P013: Residentialnonononoyesnononono
            B1P013 - Residential: Specify the sqm [m²]64 787,57
            B1P013: Officenonononononononono
            B1P013 - Office: Specify the sqm [m²]
            B1P013: Industry and Utilitynonononononononoyes
            B1P013 - Industry and Utility: Specify the sqm [m²]
            B1P013: Commercialnonononoyesnononono
            B1P013 - Commercial: Specify the sqm [m²]262,33
            B1P013: Institutionalnononononoyesnoyesno
            B1P013 - Institutional: Specify the sqm [m²]285.400
            B1P013: Natural areasnoyesnonononononoyes
            B1P013 - Natural areas: Specify the sqm [m²]
            B1P013: Recreationalnonononononononono
            B1P013 - Recreational: Specify the sqm [m²]
            B1P013: Dismissed areasnonononononononono
            B1P013 - Dismissed areas: Specify the sqm [m²]
            B1P013: Othernononononononoyesno
            B1P013 - Other: Specify the sqm [m²]
            B1P014: Building and Land Use after intervention
            B1P014: Residentialnonononononononoyes
            B1P014 - Residential: Specify the sqm [m²]
            B1P014: Officenonononononononoyes
            B1P014 - Office: Specify the sqm [m²]
            B1P014: Industry and Utilitynonononononononono
            B1P014 - Industry and Utility: Specify the sqm [m²]
            B1P014: Commercialnonononononononoyes
            B1P014 - Commercial: Specify the sqm [m²]
            B1P014: Institutionalnonononoyesyesnoyesyes
            B1P014 - Institutional: Specify the sqm [m²]35322.21280000
            B1P014: Natural areasnonononononononoyes
            B1P014 - Natural areas: Specify the sqm [m²]
            B1P014: Recreationalnonononononononoyes
            B1P014 - Recreational: Specify the sqm [m²]
            B1P014: Dismissed areasnonononononononono
            B1P014 - Dismissed areas: Specify the sqm [m²]
            B1P014: Othernononononononoyesno
            B1P014 - Other: Specify the sqm [m²]
            B2P001: PED Lab concept definition
            B2P001: PED Lab concept definition
            B2P002: Installation life time
            B2P002: Installation life timePermanent installation
            B2P003: Scale of action
            B2P003: ScaleVirtualDistrict
            B2P004: Operator of the installation
            B2P004: Operator of the installationCM Maia, IPMAIA, NEW, AdEP.
            B2P005: Replication framework: Applied strategy to reuse and recycling the materials
            B2P005: Replication framework: Applied strategy to reuse and recycling the materials
            B2P006: Circular Economy Approach
            B2P006: Do you apply any strategy to reuse and recycling the materials?No
            B2P006: Other
            B2P007: Motivation for developing the PED Lab
            B2P007: Motivation for developing the PED Lab
            • Strategic
            B2P007: Other
            B2P008: Lead partner that manages the PED Lab
            B2P008: Lead partner that manages the PED LabMunicipality
            B2P008: Other
            B2P009: Collaborative partners that participate in the PED Lab
            B2P009: Collaborative partners that participate in the PED Lab
            • Academia,
            • Private,
            • Industrial,
            • Citizens, public, NGO,
            • Other
            B2P009: OtherEnergy Agency
            B2P010: Synergies between the fields of activities
            B2P010: Synergies between the fields of activities
            B2P011: Available facilities to test urban configurations in PED Lab
            B2P011: Available facilities to test urban configurations in PED Lab
            • Buildings,
            • Demand-side management,
            • Prosumers,
            • Renewable generation,
            • Energy storage,
            • Efficiency measures,
            • Lighting,
            • E-mobility,
            • Information and Communication Technologies (ICT),
            • Ambient measures,
            • Social interactions
            B2P011: Other
            B2P012: Incubation capacities of PED Lab
            B2P012: Incubation capacities of PED Lab
            • Monitoring and evaluation infrastructure,
            • Tools, spaces, events for testing and validation
            B2P013: Availability of the facilities for external people
            B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
            B2P014: Monitoring measures
            B2P014: Monitoring measures
            • Execution plan,
            • Available data,
            • Type of measured data
            B2P015: Key Performance indicators
            B2P015: Key Performance indicators
            • Energy,
            • Environmental,
            • Social,
            • Economical / Financial
            B2P016: Execution of operations
            B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
            B2P017: Capacities
            B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.
            B2P018: Relations with stakeholders
            B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
            B2P019: Available tools
            B2P019: Available tools
            • Energy modelling,
            • Social models,
            • Business and financial models,
            • Fundraising and accessing resources,
            • Matching actors
            B2P019: Available tools
            B2P020: External accessibility
            B2P020: External accessibility
            C1P001: Unlocking Factors
            C1P001: Recent technological improvements for on-site RES production5 - Very important3 - Moderately important1 - Unimportant5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant3 - Moderately important
            C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant2 - Slightly important
            C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important5 - Very important1 - Unimportant5 - Very important3 - Moderately important4 - Important4 - Important1 - Unimportant4 - Important
            C1P001: Storage systems and E-mobility market penetration5 - Very important1 - Unimportant4 - Important4 - Important4 - Important4 - Important1 - Unimportant2 - Slightly important
            C1P001: Decreasing costs of innovative materials4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important
            C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important5 - Very important4 - Important1 - Unimportant2 - Slightly important
            C1P001: The ability to predict Multiple Benefits2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important4 - Important4 - Important1 - Unimportant4 - Important
            C1P001: The ability to predict the distribution of benefits and impacts4 - Important1 - Unimportant5 - Very important2 - Slightly important4 - Important4 - Important1 - Unimportant4 - Important
            C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important
            C1P001: Social acceptance (top-down)5 - Very important4 - Important1 - Unimportant4 - Important4 - Important4 - Important4 - Important1 - Unimportant4 - Important
            C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important
            C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important1 - Unimportant4 - Important5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important
            C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important
            C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important4 - Important4 - Important1 - Unimportant4 - Important
            C1P001: Availability of RES on site (Local RES)5 - Very important1 - Unimportant4 - Important5 - Very important5 - Very important4 - Important1 - Unimportant3 - Moderately important
            C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important4 - Important1 - Unimportant5 - Very important
            C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
            C1P001: Any other UNLOCKING FACTORS (if any)
            C1P002: Driving Factors
            C1P002: Climate Change adaptation need4 - Important3 - Moderately important1 - Unimportant5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant5 - Very important
            C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important3 - Moderately important1 - Unimportant4 - Important5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important
            C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
            C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important4 - Important4 - Important1 - Unimportant5 - Very important
            C1P002: Economic growth need2 - Slightly important1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important4 - Important1 - Unimportant3 - Moderately important
            C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important4 - Important1 - Unimportant5 - Very important
            C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important
            C1P002: Energy autonomy/independence5 - Very important2 - Slightly important1 - Unimportant4 - Important2 - Slightly important5 - Very important4 - Important1 - Unimportant3 - Moderately important
            C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
            C1P002: Any other DRIVING FACTOR (if any)
            C1P003: Administrative barriers
            C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important
            C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important4 - Important1 - Unimportant2 - Slightly important
            C1P003: Lack of public participation3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important3 - Moderately important1 - Unimportant4 - Important
            C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important
            C1P003:Long and complex procedures for authorization of project activities5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important
            C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
            C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important4 - Important1 - Unimportant2 - Slightly important
            C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important
            C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important5 - Very important1 - Unimportant4 - Important
            C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant3 - Moderately important
            C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
            C1P003: Any other Administrative BARRIER (if any)
            C1P004: Policy barriers
            C1P004: Lack of long-term and consistent energy plans and policies4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important
            C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important
            C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important
            C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
            C1P004: Any other Political BARRIER (if any)
            C1P005: Legal and Regulatory barriers
            C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant
            C1P005: Regulatory instability3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant
            C1P005: Non-effective regulations4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important
            C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important4 - Important1 - Unimportant4 - Important
            C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important4 - Important4 - Important1 - Unimportant2 - Slightly important
            C1P005: Insufficient or insecure financial incentives4 - Important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant4 - Important
            C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important
            C1P005: Shortage of proven and tested solutions and examples1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant2 - Slightly important
            C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
            C1P005: Any other Legal and Regulatory BARRIER (if any)
            C1P006: Environmental barriers
            C1P006: Environmental barriersAir Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)
            C1P007: Technical barriers
            C1P007: Lack of skilled and trained personnel4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important4 - Important1 - Unimportant2 - Slightly important
            C1P007: Deficient planning3 - Moderately important3 - Moderately important1 - Unimportant4 - Important5 - Very important5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important
            C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
            C1P007: Lack of well-defined process4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important4 - Important1 - Unimportant4 - Important
            C1P007: Inaccuracy in energy modelling and simulation4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant2 - Slightly important
            C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant2 - Slightly important
            C1P007: Grid congestion, grid instability4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important5 - Very important4 - Important1 - Unimportant1 - Unimportant
            C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important
            C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important4 - Important4 - Important1 - Unimportant1 - Unimportant
            C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
            C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
            C1P007: Any other Thecnical BARRIER (if any)
            C1P008: Social and Cultural barriers
            C1P008: Inertia4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
            C1P008: Lack of values and interest in energy optimization measurements5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important3 - Moderately important1 - Unimportant4 - Important
            C1P008: Low acceptance of new projects and technologies5 - Very important1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important
            C1P008: Difficulty of finding and engaging relevant actors5 - Very important4 - Important1 - Unimportant3 - Moderately important4 - Important4 - Important3 - Moderately important1 - Unimportant4 - Important
            C1P008: Lack of trust beyond social network4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important
            C1P008: Rebound effect4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant2 - Slightly important
            C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
            C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
            C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important4 - Important1 - Unimportant4 - Important
            C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
            C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
            C1P008: Any other Social BARRIER (if any)
            C1P009: Information and Awareness barriers
            C1P009: Insufficient information on the part of potential users and consumers5 - Very important1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant2 - Slightly important
            C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant4 - Important
            C1P009: Lack of awareness among authorities3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant2 - Slightly important
            C1P009: Information asymmetry causing power asymmetry of established actors2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important4 - Important1 - Unimportant4 - Important
            C1P009: High costs of design, material, construction, and installation1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important4 - Important1 - Unimportant4 - Important
            C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
            C1P009: Any other Information and Awareness BARRIER (if any)
            C1P010: Financial barriers
            C1P010: Hidden costs1 - Unimportant1 - Unimportant4 - Important3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important
            C1P010: Insufficient external financial support and funding for project activities1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant2 - Slightly important
            C1P010: Economic crisis1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important4 - Important1 - Unimportant4 - Important
            C1P010: Risk and uncertainty2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant2 - Slightly important
            C1P010: Lack of consolidated and tested business models4 - Important1 - Unimportant3 - Moderately important5 - Very important4 - Important4 - Important1 - Unimportant2 - Slightly important
            C1P010: Limited access to capital and cost disincentives1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant2 - Slightly important
            C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
            C1P010: Any other Financial BARRIER (if any)
            C1P011: Market barriers
            C1P011: Split incentives1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant2 - Slightly important
            C1P011: Energy price distortion1 - Unimportant1 - Unimportant5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant4 - Important
            C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important4 - Important4 - Important1 - Unimportant4 - Important
            C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
            C1P011: Any other Market BARRIER (if any)
            C1P012: Stakeholders involved
            C1P012: Government/Public Authorities
            • Design/demand aggregation
            • Planning/leading
            • Planning/leading,
            • Monitoring/operation/management
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            C1P012: Research & Innovation
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • None
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            C1P012: Financial/Funding
            • Planning/leading,
            • Design/demand aggregation,
            • Monitoring/operation/management
            • Construction/implementation,
            • Monitoring/operation/management
            • Planning/leading,
            • Construction/implementation,
            • Monitoring/operation/management
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            C1P012: Analyst, ICT and Big Data
            • Monitoring/operation/management
            • Planning/leading,
            • Monitoring/operation/management
            • None
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Planning/leading,
            • Monitoring/operation/management
            C1P012: Business process management
            • Design/demand aggregation
            • Monitoring/operation/management
            • None
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • None
            C1P012: Urban Services providers
            • Design/demand aggregation
            • Planning/leading,
            • Monitoring/operation/management
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Planning/leading,
            • Construction/implementation,
            • Monitoring/operation/management
            C1P012: Real Estate developers
            • Construction/implementation
            • Construction/implementation
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            C1P012: Design/Construction companies
            • Design/demand aggregation
            • Construction/implementation
            • Design/demand aggregation,
            • Construction/implementation
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation
            C1P012: End‐users/Occupants/Energy Citizens
            • Monitoring/operation/management
            • Design/demand aggregation
            • Construction/implementation
            • Monitoring/operation/management
            • Design/demand aggregation
            C1P012: Social/Civil Society/NGOs
            • Design/demand aggregation
            • Design/demand aggregation
            • Design/demand aggregation
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Design/demand aggregation,
            • Monitoring/operation/management
            C1P012: Industry/SME/eCommerce
            • Construction/implementation
            • Construction/implementation
            • Design/demand aggregation,
            • Construction/implementation
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            C1P012: Other
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • None
            C1P012: Other (if any)
            Summary

            Authors (framework concept)

            Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

            Contributors (to the content)

            Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

            Implemented by

            Boutik.pt: Filipe Martins, Jamal Khan
            Marek Suchánek (Czech Technical University in Prague)