Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Uncompare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Uncompare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Halmstad, Fyllinge
Salzburg, Gneis district
Oulu, Kaukovainio
Barcelona, SEILAB & Energy SmartLab
Freiburg, Waldsee
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityHalmstad, FyllingeSalzburg, Gneis districtOulu, KaukovainioBarcelona, SEILAB & Energy SmartLabFreiburg, Waldsee
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesyesnoyes
PED relevant case studyyesyesnononono
PED Lab.nonononoyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynonoyesyesnoyes
Annual energy surplusnonoyesnonono
Energy communityyesyesyesnoyesyes
Circularitynononoyesnono
Air quality and urban comfortyesnoyesnonono
Electrificationyesnonoyesyesyes
Net-zero energy costnononononono
Net-zero emissionnonononoyesyes
Self-sufficiency (energy autonomous)nonononoyesno
Maximise self-sufficiencynononononono
Othernonononoyesno
Other (A1P004)Green IT
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseCompletedIn operationIn operationPlanning Phase
A1P006: Start Date
A1P006: Start date01/2101/2001/201111/21
A1P007: End Date
A1P007: End date01/3001/2402/201311/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • Monitoring data available within the districts
  • General statistical datasets
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
      • Data from the local energy provider available (restricted usage for some data points because of data security reasons,
      • renewable energy potential,
      • own calculations based on publicly available data,
      • Some data can be found in https://geoportal.freiburg.de/freigis/
      A1P011: Geographic coordinates
      X Coordinate (longitude):23.81458812.9205413.04121625.5175950840935072.17.885857135842917
      Y Coordinate (latitude):38.07734956.6519447.77101964.9928809817313241.347.986535207080045
      A1P012: Country
      A1P012: CountryGreeceSwedenAustriaFinlandSpainGermany
      A1P013: City
      A1P013: CityMunicipality of KifissiaHalmstadSalzburgOuluBarcelona and TarragonaFreiburg im Breisgau
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).CsaDwbDfbDfcCsaCfb
      A1P015: District boundary
      A1P015: District boundaryVirtualGeographicGeographicVirtualVirtual
      OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodRegional (close to virtual)
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:MixedMixedMixedPublicMixed
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerSingle OwnerSingle OwnerMultiple Owners
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED25017602941
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]19976219700284070
      A1P020: Total ground area
      A1P020: Total ground area [m²]600004920000
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area000000
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estatenoyesnoyesnono
      A1P022a: Add the value in EUR if available [EUR]
      A1P022b: Financing - PRIVATE - ESCO schemenononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernononononono
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnononononono
      A1P022d: Add the value in EUR if available [EUR]
      A1P022e: Financing - PUBLIC - National fundingnononononono
      A1P022e: Add the value in EUR if available [EUR]
      A1P022f: Financing - PUBLIC - Regional fundingnononononono
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingnononoyesnoyes
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUnoyesyesyesnoyes
      A1P022i: Add the value in EUR if available [EUR]
      A1P022j: Financing - RESEARCH FUNDING - Nationalnononononoyes
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: Other
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Boosting local and sustainable production
      • Positive externalities,
      • Other
      • Positive externalities,
      • Boosting local and sustainable production
      • Job creation,
      • Boosting local and sustainable production
      A1P023: OtherBoosting social cooperation and social aidDeveloping and demonstrating new solutions
      A1P024: More comments:
      A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]5
      Contact person for general enquiries
      A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaMarkus OlofsgårdAbel MagyariSamuli RinneDr. Jaume Salom, Dra. Cristina CorcheroDr. Annette Steingrube
      A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamAFRYABUDCity of OuluIRECFraunhofer Institute for solar energy systems
      A1P028: AffiliationMunicipality / Public BodiesOtherResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityResearch Center / University
      A1P028: Other
      A1P029: Emailgiavasoglou@kifissia.grmarkus.olofsgard@afry.commagyari.abel@abud.husamuli.rinne@ouka.fiJsalom@irec.catAnnette.Steingrube@ise.fraunhofer.de
      Contact person for other special topics
      A1P030: NameStavros Zapantis - vice mayorStrassl IngeborgSamuli Rinne
      A1P031: Emailstavros.zapantis@gmail.cominge.strassl@salzburg.gv.atsamuli.rinne@ouka.fi
      Pursuant to the General Data Protection RegulationYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy production
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Water use,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Waste management
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldslink based regulation of electricity grid- Dynamic district, and building scale energy modelling - Microclimate modelling - Klimaaktiv certification system - Energy community - Flexibility with shared heating and electricity systemsDifferent kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)Energy system modeling
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoYesNoYes
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceNoNoNoYesYes
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceYesNoNoYesYes
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationNot included. However, there is a charging place for a shared EV in one building.– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhAll energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutrality
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.1135.715
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.231.76
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesyesyesyesyesno
      A2P011: PV - specify production in GWh/annum [GWh/annum]0.77706640.1
      A2P011: Windnononononono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydronononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnononononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnononononono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernononononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalnoyesyesnonono
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalnononononono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_heatnononononono
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: Waste heat+HPnononoyesnono
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.2
      A2P012: Biomass_peat_heatnononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnononononono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notesHeat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)53 MW PV potential in all three quarters; no other internal renewable energy potentials known
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]0.8190162.3132.5
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]-10
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnonononoyesno
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernononononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnononoyesnono
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
      A2P018: Windnononoyesnono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydronononoyesnono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnononoyesnono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnononoyesnono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernononononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnononoyesnono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
      A2P019: Waste heat+HPnononononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnononononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernononononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary0003.285714285714300
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]0
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & Security
      A2P022: HealthCO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levelsEncouraging a healthy lifestyle
      A2P022: Education
      A2P022: MobilityModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV chargingyes
      A2P022: EnergyNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissionsFinal energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reductionyes
      A2P022: Water
      A2P022: Economic developmentInvestment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost ComparisonTotal investments, Payback time, Economic value of savings
      A2P022: Housing and CommunityAccess to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousnessDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy povertyyes
      A2P022: WasteRecycling rate
      A2P022: OtherSmart Cities strategies, Quality of open data
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsnoyesyesyesyesyes
      A2P023: Solar thermal collectorsnononononoyes
      A2P023: Wind Turbinesnononononono
      A2P023: Geothermal energy systemnonoyesnonoyes
      A2P023: Waste heat recoverynononoyesnoyes
      A2P023: Waste to energynononononoyes
      A2P023: Polygenerationnononononono
      A2P023: Co-generationnononoyesnoyes
      A2P023: Heat Pumpnononoyesnoyes
      A2P023: Hydrogennononononoyes
      A2P023: Hydropower plantnononononoyes
      A2P023: Biomassnononoyesnoyes
      A2P023: Biogasnononononoyes
      A2P023: Other
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)noyesnoyesyesyes
      A2P024: Energy management systemnonoyesyesyesyes
      A2P024: Demand-side managementnoyesyesnonoyes
      A2P024: Smart electricity gridnoyesyesnoyesyes
      A2P024: Thermal Storagenononoyesnoyes
      A2P024: Electric Storagenonononoyesyes
      A2P024: District Heating and Coolingnononoyesnoyes
      A2P024: Smart metering and demand-responsive control systemsnoyesnononoyes
      A2P024: P2P – buildingsnonoyesnonoyes
      A2P024: Other
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnononoyesnoyes
      A2P025: Energy efficiency measures in historic buildingsnononononoyes
      A2P025: High-performance new buildingsnonoyesyesnono
      A2P025: Smart Public infrastructure (e.g. smart lighting)nononononono
      A2P025: Urban data platformsnononoyesnoyes
      A2P025: Mobile applications for citizensnononononono
      A2P025: Building services (HVAC & Lighting)nonoyesyesyesno
      A2P025: Smart irrigationnononononono
      A2P025: Digital tracking for waste disposalnononononono
      A2P025: Smart surveillancenononononono
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)nononoyesyesyes
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonoyesyesnoyes
      A2P026: e-Mobilitynonoyesyesnoyes
      A2P026: Soft mobility infrastructures and last mile solutionsnononoyesnoyes
      A2P026: Car-free areanononononono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notesShared mobility: a mobility point will be implemented and ensure the flexible use of different mobility services.
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesNoYesYesNo
      A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEnergy Performance CertificateThe obligatory buildijng energy classification
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoYesNoNo
      A2P029: If yes, please specify and/or enter notesKlimaaktiv certificate, Greenpass certificate
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC)
      • Promotion of energy communities (REC/CEC)
      • Smart cities strategies,
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • New development strategies
      • Smart cities strategies
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyCarbon neutrality by 2035Climate neutrality by 2035
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Electrification of Heating System based on Heat Pumps
      • Electrification of Heating System based on Heat Pumps,
      • Biogas,
      • Hydrogen
      A3P003: Other
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and prioritiesDeveloping and demonstrating solutions for carbon neutrality-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.Freiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district level
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviourE. g. visualizing energy and water consumption-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.Energy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economy
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Local trading
      • Innovative business models,
      • Local trading
      • Open data business models,
      • Innovative business models,
      • PPP models,
      • Life Cycle Cost,
      • Circular economy models
      • Demand management Living Lab
      • Demand management Living Lab,
      • Local trading,
      • Existing incentives
      A3P006: Other
      A3P007: Social models
      A3P007: Social models
      • Behavioural Change / End-users engagement,
      • Citizen/owner involvement in planning and maintenance
      • Strategies towards (local) community-building,
      • Behavioural Change / End-users engagement,
      • Social incentives,
      • Quality of Life,
      • Strategies towards social mix,
      • Affordability,
      • Citizen/owner involvement in planning and maintenance
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Quality of Life,
      • Strategies towards social mix,
      • Affordability,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Digital Inclusion,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning
      • Building / district Certification
      • Strategic urban planning,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Energy Neutral,
      • Carbon-free
      • Energy Neutral,
      • Low Emission Zone
      • Energy Neutral,
      • Net zero carbon footprint
      • Energy Neutral,
      • Low Emission Zone,
      • Pollutants Reduction,
      • Greening strategies
      A3P009: Other
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionThe original idea is that the area produces at least as much it consumes.Assessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case study
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentDeveloping systems towards carbon neutrality. Also urban renewal.City is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regard
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaSuburban areaSuburban areaSuburban areaSuburban area
      B1P004: Type of district
      B2P004: Type of district
      • New construction
      • New construction
      • New construction,
      • Renovation
      • Renovation
      B1P005: Case Study Context
      B1P005: Case Study Context
      • New Development
      • New Development
      • New Development,
      • Retrofitting Area
      • Retrofitting Area
      B1P006: Year of construction
      B1P006: Year of construction2024
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential35005898
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential35005898
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P011: Population density before intervention
      B1P011: Population density before intervention000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention0000.05833333333333300.0011987804878049
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnononoyesnoyes
      B1P013 - Residential: Specify the sqm [m²]
      B1P013: Officenononononoyes
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynononononoyes
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialnononoyesnoyes
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnononononoyes
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasnoyesyesyesnoyes
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalnononoyesnoyes
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnononononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernononononono
      B1P013 - Other: Specify the sqm [m²]
      B1P014: Building and Land Use after intervention
      B1P014: Residentialnonoyesyesnoyes
      B1P014 - Residential: Specify the sqm [m²]
      B1P014: Officenononononoyes
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynononononoyes
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnononoyesnoyes
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnononononoyes
      B1P014 - Institutional: Specify the sqm [m²]
      B1P014: Natural areasnonoyesyesnoyes
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnononoyesnoyes
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernononononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
      B2P002: Installation life time
      B2P002: Installation life time
      B2P003: Scale of action
      B2P003: ScaleVirtual
      B2P004: Operator of the installation
      B2P004: Operator of the installationIREC
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?No
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Strategic,
      • Private
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabResearch center/University
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Other
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Efficiency measures,
      • Information and Communication Technologies (ICT)
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Monitoring and evaluation infrastructure,
      • Tools for prototyping and modelling,
      • Tools, spaces, events for testing and validation
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Equipment
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Environmental
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholders
      B2P019: Available tools
      B2P019: Available tools
      • Energy modelling
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production5 - Very important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
      C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important
      C1P001: Storage systems and E-mobility market penetration5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important
      C1P001: Decreasing costs of innovative materials4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important
      C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important
      C1P001: The ability to predict Multiple Benefits2 - Slightly important1 - Unimportant4 - Important4 - Important3 - Moderately important
      C1P001: The ability to predict the distribution of benefits and impacts4 - Important1 - Unimportant2 - Slightly important4 - Important2 - Slightly important
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
      C1P001: Social acceptance (top-down)5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
      C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important1 - Unimportant4 - Important1 - Unimportant4 - Important
      C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important4 - Important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important
      C1P001: Availability of RES on site (Local RES)5 - Very important1 - Unimportant4 - Important4 - Important4 - Important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important3 - Moderately important1 - Unimportant4 - Important5 - Very important2 - Slightly important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important
      C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important3 - Moderately important1 - Unimportant5 - Very important4 - Important4 - Important
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important2 - Slightly important
      C1P002: Economic growth need2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important2 - Slightly important
      C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P002: Energy autonomy/independence5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important
      C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important4 - Important
      C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
      C1P003: Lack of public participation3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important
      C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important
      C1P003:Long and complex procedures for authorization of project activities5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant
      C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important
      C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important4 - Important
      C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important2 - Slightly important
      C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important3 - Moderately important
      C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies4 - Important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important
      C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
      C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important
      C1P005: Regulatory instability3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important
      C1P005: Non-effective regulations4 - Important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
      C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
      C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important
      C1P005: Insufficient or insecure financial incentives4 - Important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant2 - Slightly important
      C1P005: Shortage of proven and tested solutions and examples1 - Unimportant1 - Unimportant2 - Slightly important4 - Important3 - Moderately important
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriers
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel4 - Important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important4 - Important
      C1P007: Deficient planning3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important
      C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
      C1P007: Lack of well-defined process4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P007: Inaccuracy in energy modelling and simulation4 - Important5 - Very important1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important
      C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P007: Grid congestion, grid instability4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
      C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
      C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia4 - Important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important4 - Important
      C1P008: Lack of values and interest in energy optimization measurements5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
      C1P008: Low acceptance of new projects and technologies5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important
      C1P008: Difficulty of finding and engaging relevant actors5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important
      C1P008: Lack of trust beyond social network4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
      C1P008: Rebound effect4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
      C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
      C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important
      C1P009: Lack of awareness among authorities3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important
      C1P009: Information asymmetry causing power asymmetry of established actors2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
      C1P009: High costs of design, material, construction, and installation1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important
      C1P010: Insufficient external financial support and funding for project activities1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important
      C1P010: Economic crisis1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P010: Risk and uncertainty2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important4 - Important
      C1P010: Lack of consolidated and tested business models4 - Important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important
      C1P010: Limited access to capital and cost disincentives1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives1 - Unimportant1 - Unimportant2 - Slightly important4 - Important2 - Slightly important
      C1P011: Energy price distortion1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important
      C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Financial/Funding
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • None
      C1P012: Analyst, ICT and Big Data
      • Monitoring/operation/management
      • Monitoring/operation/management
      • None
      C1P012: Business process management
      • Design/demand aggregation
      • Planning/leading,
      • Monitoring/operation/management
      • None
      C1P012: Urban Services providers
      • Design/demand aggregation
      • Planning/leading
      • None
      C1P012: Real Estate developers
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      • None
      C1P012: Design/Construction companies
      • Design/demand aggregation
      • Design/demand aggregation
      • Construction/implementation
      C1P012: End‐users/Occupants/Energy Citizens
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Social/Civil Society/NGOs
      • Design/demand aggregation
      • Monitoring/operation/management
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Industry/SME/eCommerce
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • None
      C1P012: Other
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)