Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Uncompare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Uncompare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Uncompare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Lund, Brunnshög district
Évora, Portugal
Riga, Ķīpsala, RTU smart student city
Vienna, Laxenburgerstraße AH
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityLund, Brunnshög districtÉvora, PortugalRiga, Ķīpsala, RTU smart student cityVienna, Laxenburgerstraße AH
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnoyesno
PED relevant case studyyesnoyesnono
PED Lab.nonoyesnoyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesnoyesyes
Annual energy surplusnoyesyesnono
Energy communityyesyesyesyesyes
Circularitynoyesnonono
Air quality and urban comfortyesyesnonono
Electrificationyesyesnonono
Net-zero energy costnonononono
Net-zero emissionnoyesnonono
Self-sufficiency (energy autonomous)nononoyesno
Maximise self-sufficiencynononoyesno
Othernoyesnonono
Other (A1P004)Holistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030;
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseIn operationImplementation PhasePlanning PhasePlanning Phase
A1P006: Start Date
A1P006: Start date201510/1901/2401/25
A1P007: End Date
A1P007: End date204009/2412/2612/28
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
A1P009: OtherGIS open dataset is under construction
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
      A1P011: Geographic coordinates
      X Coordinate (longitude):23.81458813.232469400769599-7.90937724.0816833916.36561
      Y Coordinate (latitude):38.07734955.7198979220719338.57080456.9524595648.15746
      A1P012: Country
      A1P012: CountryGreeceSwedenPortugalLatviaAustria
      A1P013: City
      A1P013: CityMunicipality of KifissiaLundÉvoraRigaVienna, 10th district
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).CsaDfbCsaCfbDfb
      A1P015: District boundary
      A1P015: District boundaryVirtualGeographicGeographicGeographicGeographic
      OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:PublicMixedPublicPrivate
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersSingle Owner
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED20015
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]1500000170000
      A1P020: Total ground area
      A1P020: Total ground area [m²]150000011926440000
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area01010
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estatenoyesnonoyes
      A1P022a: Add the value in EUR if available [EUR]99999999
      A1P022b: Financing - PRIVATE - ESCO schemenonononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernonononono
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnoyesnonono
      A1P022d: Add the value in EUR if available [EUR]1000000
      A1P022e: Financing - PUBLIC - National fundingnoyesnonoyes
      A1P022e: Add the value in EUR if available [EUR]30000000
      A1P022f: Financing - PUBLIC - Regional fundingnoyesnonono
      A1P022f: Add the value in EUR if available [EUR]30000000
      A1P022g: Financing - PUBLIC - Municipal fundingnoyesnonoyes
      A1P022g: Add the value in EUR if available [EUR]180000000
      A1P022h: Financing - PUBLIC - Othernonononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUnoyesyesyesyes
      A1P022i: Add the value in EUR if available [EUR]2000000199982757500000
      A1P022j: Financing - RESEARCH FUNDING - Nationalnonononoyes
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernonononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: Other
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Other
      • Boosting local businesses,
      • Boosting local and sustainable production
      A1P023: OtherWorld class sustainable living and research environments
      A1P024: More comments:
      A1P024: More comments:
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
      Contact person for general enquiries
      A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaMarkus PaulssonJoão Bravo DiasJudith StiekemaGernot Tscherteu, Gudrun Peller
      A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamCity of LundEDP LabelecOASCRealitylab, private company
      A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesSME / IndustryOtherOther
      A1P028: Othernot for profit private organisation
      A1P029: Emailgiavasoglou@kifissia.grmarkus.paulsson@lund.sejoao.bravodias@edp.ptjudith@oascities.orgGt@realitylab.at
      Contact person for other special topics
      A1P030: NameStavros Zapantis - vice mayorEva Dalman
      A1P031: Emailstavros.zapantis@gmail.comeva.dalman@lund.se
      Pursuant to the General Data Protection RegulationYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Water use,
      • Waste management,
      • Construction materials,
      • Other
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Waste management,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Indoor air quality,
      • Construction materials
      A2P001: OtherWalkability and biking
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsLundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions.A suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoNoNo
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceYesYesYes
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceYesYesYes
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationToday electrically charged vehicles are included in the energy balance. In the future also other fuels should be included.The university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]258000
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]305000
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesyesnonono
      A2P011: PV - specify production in GWh/annum [GWh/annum]
      A2P011: Windnoyesnoyesno
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydrononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnonononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnonononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnononoyesno
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernonononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalnonononono
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalnonononono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_heatnononoyesno
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: Waste heat+HPnoyesnonono
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]200
      A2P012: Biomass_peat_heatnonononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnonononono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnonononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernonononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notesConventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnononoyesno
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnonononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnonononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernonononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnoyesnonono
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
      A2P018: Windnoyesnonono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydronoyesnonono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnoyesnonono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnonononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnonononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernonononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnonononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnonononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnonononono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnonononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnonononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnonononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnonononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernonononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary00000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & Security
      A2P022: HealthYes
      A2P022: Education
      A2P022: MobilityMaximum 1/3 transport with carYes
      A2P022: EnergyLocal energy production 150% of energy needYes
      A2P022: Water
      A2P022: Economic development
      A2P022: Housing and Community50% rental apartments and 50% owner apartmentsYes
      A2P022: Waste
      A2P022: Other
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsnoyesyesnoyes
      A2P023: Solar thermal collectorsnoyesyesnono
      A2P023: Wind Turbinesnoyesnonono
      A2P023: Geothermal energy systemnoyesnonoyes
      A2P023: Waste heat recoverynoyesnonono
      A2P023: Waste to energynonononono
      A2P023: Polygenerationnoyesnonono
      A2P023: Co-generationnonononono
      A2P023: Heat Pumpnoyesnonoyes
      A2P023: Hydrogennoyesnonono
      A2P023: Hydropower plantnonononono
      A2P023: Biomassnonononono
      A2P023: Biogasnonononono
      A2P023: Other
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesyesyes
      A2P024: Energy management systemnoyesyesyesno
      A2P024: Demand-side managementnoyesnoyesyes
      A2P024: Smart electricity gridnoyesyesyesno
      A2P024: Thermal Storagenoyesyesyesyes
      A2P024: Electric Storagenoyesyesyesyes
      A2P024: District Heating and Coolingnoyesnoyesyes
      A2P024: Smart metering and demand-responsive control systemsnoyesyesyesyes
      A2P024: P2P – buildingsnonoyesnono
      A2P024: Other
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnonononoyes
      A2P025: Energy efficiency measures in historic buildingsnonoyesnoyes
      A2P025: High-performance new buildingsnoyesnonono
      A2P025: Smart Public infrastructure (e.g. smart lighting)noyesnonono
      A2P025: Urban data platformsnoyesyesyesno
      A2P025: Mobile applications for citizensnonoyesyesno
      A2P025: Building services (HVAC & Lighting)noyesyesyesno
      A2P025: Smart irrigationnonononono
      A2P025: Digital tracking for waste disposalnoyesyesnono
      A2P025: Smart surveillancenonoyesnono
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)nonononono
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesnonono
      A2P026: e-Mobilitynoyesyesnono
      A2P026: Soft mobility infrastructures and last mile solutionsnoyesyesnono
      A2P026: Car-free areanoyesnonoyes
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notesWalkability
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesYesNoNo
      A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingMiljöbyggnad silver/guld
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoNoNo
      A2P029: If yes, please specify and/or enter notes
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC)
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyCity strategy: Net climate neutrality 2030
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: OtherNo gas grid in Brunnshög
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and prioritiesLocal waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars.
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviourNeed to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • PPP models,
      • Other
      • Open data business models,
      • Innovative business models,
      • Demand management Living Lab
      • Innovative business models,
      • PPP models,
      • Local trading,
      • Existing incentives
      A3P006: OtherAttractivenes
      A3P007: Social models
      A3P007: Social models
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Quality of Life,
      • Strategies towards social mix
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Quality of Life,
      • Affordability,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • City Vision 2050,
      • SECAP Updates
      • Digital twinning and visual 3D models
      • Strategic urban planning,
      • Building / district Certification
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Net zero carbon footprint,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Nature Based Solutions (NBS)
      • Energy Neutral
      • Energy Neutral,
      • Low Emission Zone,
      • Greening strategies
      A3P009: Other
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspectsThe municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions.
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionVision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods.The PED main objective is to achieve the energy transition while preserving cultural heritage and improving citizen’s quality of life.ExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentThe aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development.POCITYF brings together eight cities (Lightouse and Fellow cities), all having cultural heritage areas in their territory. All are intrinsically motivated to participate in the necessary energy transition not only for their conventional city districts of mixed-used, but also for districts with individually specificities as those belonging in their cultural heritage, which at the moment may be acting as barriers for their further environmental sustainability, but after POCITYF will be acting as a promising building retrofits roadmap for similar and other EU cities.Expected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaUrban areaUrban areaUrban area
      B1P004: Type of district
      B2P004: Type of district
      • New construction
      • Renovation
      B1P005: Case Study Context
      B1P005: Case Study Context
      • New Development
      • Preservation Area
      B1P006: Year of construction
      B1P006: Year of construction
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential0
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential18000
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential2000
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential22000
      B1P011: Population density before intervention
      B1P011: Population density before intervention00000
      B1P012: Population density after intervention
      B1P012: Population density after intervention00.026666666666667000
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnonononono
      B1P013 - Residential: Specify the sqm [m²]
      B1P013: Officenoyesnonono
      B1P013 - Office: Specify the sqm [m²]60000
      B1P013: Industry and Utilitynonononono
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialnonononono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnonononono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasnoyesnonono
      B1P013 - Natural areas: Specify the sqm [m²]2000000
      B1P013: Recreationalnonononono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnonononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernoyesnonono
      B1P013 - Other: Specify the sqm [m²]Outdoor parking: 100000
      B1P014: Building and Land Use after intervention
      B1P014: Residentialnoyesnonono
      B1P014 - Residential: Specify the sqm [m²]600000
      B1P014: Officenoyesnonono
      B1P014 - Office: Specify the sqm [m²]650000
      B1P014: Industry and Utilitynonononono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnonononono
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnoyesnonono
      B1P014 - Institutional: Specify the sqm [m²]50000
      B1P014: Natural areasnonononono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnoyesnonono
      B1P014 - Recreational: Specify the sqm [m²]400000
      B1P014: Dismissed areasnonononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernonononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definition
      B2P002: Installation life time
      B2P002: Installation life time
      B2P003: Scale of action
      B2P003: ScaleDistrict
      B2P004: Operator of the installation
      B2P004: Operator of the installation
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED Lab
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Other
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Buildings,
      • Demand-side management,
      • Prosumers,
      • Renewable generation,
      • Energy storage,
      • Energy networks,
      • Waste management,
      • E-mobility,
      • Social interactions,
      • Circular economy models
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Monitoring and evaluation infrastructure,
      • Tools for prototyping and modelling,
      • Tools, spaces, events for testing and validation
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholders
      B2P019: Available tools
      B2P019: Available tools
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production5 - Very important5 - Very important4 - Important5 - Very important4 - Important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important5 - Very important3 - Moderately important5 - Very important3 - Moderately important
      C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important5 - Very important5 - Very important5 - Very important3 - Moderately important
      C1P001: Storage systems and E-mobility market penetration3 - Moderately important4 - Important4 - Important1 - Unimportant
      C1P001: Decreasing costs of innovative materials4 - Important4 - Important3 - Moderately important4 - Important2 - Slightly important
      C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important3 - Moderately important4 - Important5 - Very important5 - Very important
      C1P001: The ability to predict Multiple Benefits2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant
      C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important4 - Important3 - Moderately important5 - Very important5 - Very important
      C1P001: Social acceptance (top-down)5 - Very important3 - Moderately important4 - Important4 - Important5 - Very important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important5 - Very important4 - Important5 - Very important5 - Very important
      C1P001: Presence of integrated urban strategies and plans3 - Moderately important3 - Moderately important5 - Very important4 - Important5 - Very important
      C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important5 - Very important5 - Very important5 - Very important4 - Important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important3 - Moderately important4 - Important5 - Very important4 - Important
      C1P001: Availability of RES on site (Local RES)5 - Very important3 - Moderately important4 - Important5 - Very important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important2 - Slightly important4 - Important4 - Important3 - Moderately important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need4 - Important5 - Very important5 - Very important5 - Very important5 - Very important
      C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important4 - Important4 - Important3 - Moderately important
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important
      C1P002: Urban re-development of existing built environment3 - Moderately important5 - Very important3 - Moderately important4 - Important5 - Very important
      C1P002: Economic growth need2 - Slightly important4 - Important4 - Important4 - Important1 - Unimportant
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important5 - Very important3 - Moderately important4 - Important4 - Important
      C1P002: Territorial and market attractiveness2 - Slightly important5 - Very important3 - Moderately important4 - Important4 - Important
      C1P002: Energy autonomy/independence5 - Very important1 - Unimportant3 - Moderately important4 - Important5 - Very important
      C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important5 - Very important5 - Very important4 - Important3 - Moderately important
      C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important5 - Very important3 - Moderately important4 - Important2 - Slightly important
      C1P003: Lack of public participation3 - Moderately important2 - Slightly important3 - Moderately important4 - Important2 - Slightly important
      C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important
      C1P003:Long and complex procedures for authorization of project activities5 - Very important4 - Important5 - Very important3 - Moderately important4 - Important
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
      C1P003: Complicated and non-comprehensive public procurement4 - Important3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important
      C1P003: Fragmented and or complex ownership structure3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important5 - Very important4 - Important3 - Moderately important3 - Moderately important
      C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
      C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies4 - Important5 - Very important3 - Moderately important1 - Unimportant5 - Very important
      C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important5 - Very important3 - Moderately important1 - Unimportant4 - Important
      C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant4 - Important
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important5 - Very important5 - Very important4 - Important4 - Important
      C1P005: Regulatory instability3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important4 - Important
      C1P005: Non-effective regulations4 - Important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important
      C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important3 - Moderately important5 - Very important4 - Important3 - Moderately important
      C1P005: Building code and land-use planning hindering innovative technologies4 - Important3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important
      C1P005: Insufficient or insecure financial incentives4 - Important5 - Very important2 - Slightly important3 - Moderately important4 - Important
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important
      C1P005: Shortage of proven and tested solutions and examples4 - Important5 - Very important3 - Moderately important4 - Important
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriers?
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel4 - Important5 - Very important2 - Slightly important4 - Important3 - Moderately important
      C1P007: Deficient planning3 - Moderately important3 - Moderately important2 - Slightly important4 - Important2 - Slightly important
      C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important
      C1P007: Lack of well-defined process4 - Important4 - Important1 - Unimportant4 - Important4 - Important
      C1P007: Inaccuracy in energy modelling and simulation4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Grid congestion, grid instability4 - Important4 - Important1 - Unimportant4 - Important2 - Slightly important
      C1P007: Negative effects of project intervention on the natural environment3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important
      C1P007: Difficult definition of system boundaries3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia4 - Important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
      C1P008: Lack of values and interest in energy optimization measurements5 - Very important4 - Important1 - Unimportant3 - Moderately important5 - Very important
      C1P008: Low acceptance of new projects and technologies5 - Very important2 - Slightly important2 - Slightly important4 - Important5 - Very important
      C1P008: Difficulty of finding and engaging relevant actors5 - Very important5 - Very important1 - Unimportant3 - Moderately important4 - Important
      C1P008: Lack of trust beyond social network4 - Important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
      C1P008: Rebound effect4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
      C1P008: Hostile or passive attitude towards environmentalism5 - Very important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P008: Exclusion of socially disadvantaged groups2 - Slightly important4 - Important1 - Unimportant3 - Moderately important5 - Very important
      C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
      C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers4 - Important4 - Important3 - Moderately important3 - Moderately important
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important1 - Unimportant3 - Moderately important2 - Slightly important
      C1P009: Lack of awareness among authorities3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important
      C1P009: Information asymmetry causing power asymmetry of established actors2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P009: High costs of design, material, construction, and installation5 - Very important4 - Important3 - Moderately important3 - Moderately important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs3 - Moderately important1 - Unimportant4 - Important3 - Moderately important
      C1P010: Insufficient external financial support and funding for project activities2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P010: Economic crisis5 - Very important3 - Moderately important3 - Moderately important5 - Very important
      C1P010: Risk and uncertainty5 - Very important2 - Slightly important3 - Moderately important4 - Important
      C1P010: Lack of consolidated and tested business models4 - Important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P010: Limited access to capital and cost disincentives5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P011: Energy price distortion3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
      C1P011: Energy market concentration, gatekeeper actors (DSOs)2 - Slightly important2 - Slightly important5 - Very important3 - Moderately important
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading,
      • Monitoring/operation/management
      • Planning/leading
      C1P012: Research & Innovation
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Financial/Funding
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Analyst, ICT and Big Data
      • Monitoring/operation/management
      • Planning/leading,
      • Monitoring/operation/management
      C1P012: Business process management
      • Design/demand aggregation,
      • Construction/implementation
      • Monitoring/operation/management
      C1P012: Urban Services providers
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Monitoring/operation/management
      C1P012: Real Estate developers
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation
      C1P012: Design/Construction companies
      • Design/demand aggregation,
      • Construction/implementation
      • Construction/implementation
      C1P012: End‐users/Occupants/Energy Citizens
      • Monitoring/operation/management
      • Design/demand aggregation
      C1P012: Social/Civil Society/NGOs
      • None
      • Design/demand aggregation
      C1P012: Industry/SME/eCommerce
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation
      C1P012: Other
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)