Filters:
NameProjectTypeCompare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Uncompare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Uncompare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Uncompare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Vienna, Am Kempelenpark
Istanbul, Ozyegin University Campus
Groningen, PED South
REPLICATE (pilot action in the Novoli-Cascine district on "le PIagge" buildings), Firenze
Halmstad, Fyllinge
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityVienna, Am KempelenparkIstanbul, Ozyegin University CampusGroningen, PED SouthREPLICATE (pilot action in the Novoli-Cascine district on "le PIagge" buildings), FirenzeHalmstad, Fyllinge
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnononono
PED relevant case studyyesnoyesnoyesyes
PED Lab.nononoyesnono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesno
Annual energy surplusnoyesnoyesnono
Energy communityyesnonoyesnoyes
Circularitynononoyesnono
Air quality and urban comfortyesnoyesnonono
Electrificationyesnoyesnonono
Net-zero energy costnononononono
Net-zero emissionnononoyesnono
Self-sufficiency (energy autonomous)nononononono
Maximise self-sufficiencynononononono
Othernonoyesnoyesno
Other (A1P004)almost nZEB districtSocial aspects/affordability; The technological choice about RES exploitation, has been made also taking into account the local air quality issue in the urban centre (no biomass, no CHP)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseImplementation PhaseImplementation PhaseCompletedPlanning Phase
A1P006: Start Date
A1P006: Start date07/1610/2412/1801/1701/21
A1P007: End Date
A1P007: End date02/2510/2812/2312/2101/30
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
      • TNO, Hanze, RUG,
      • Ped noord book
        A1P011: Geographic coordinates
        X Coordinate (longitude):23.81458816.39529229.2583006.59065511.23053912.92054
        Y Coordinate (latitude):38.07734948.17359841.03060053.20408743.79271156.65194
        A1P012: Country
        A1P012: CountryGreeceAustriaTurkeyNetherlandsItalySweden
        A1P013: City
        A1P013: CityMunicipality of KifissiaViennaIstanbulGroningenFirenzeHalmstad
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CsaCwbCfaCfaCfaDwb
        A1P015: District boundary
        A1P015: District boundaryVirtualGeographicGeographicFunctionalGeographic
        OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:PrivatePrivateMixedMixedMixed
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Single OwnerSingle OwnerMultiple OwnersMultiple OwnersMultiple Owners
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED6154250
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]7.86
        A1P020: Total ground area
        A1P020: Total ground area [m²]285.40045.093
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area000000
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenonoyesyesnoyes
        A1P022a: Add the value in EUR if available [EUR]
        A1P022b: Financing - PRIVATE - ESCO schemenononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernononoyesnono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnonononoyesno
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingnononoyesyesno
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingnononononono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnononoyesyesno
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnonoyesyesnoyes
        A1P022i: Add the value in EUR if available [EUR]
        A1P022j: Financing - RESEARCH FUNDING - Nationalnononononono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: Other
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Positive externalities,
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products
        • Boosting local businesses,
        • Boosting local and sustainable production
        • Boosting local and sustainable production
        A1P023: Other
        A1P024: More comments:
        A1P024: More comments:In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]1
        Contact person for general enquiries
        A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaGerhard HoferCem KeskinJasper Tonen, Elisabeth KoopsChristoph GollnerMarkus Olofsgård
        A1P027: OrganizationMunicipality of Kifissia – SPARCS local teame7 energy innovation & engineeringCenter for Energy, Environment and Economy, Ozyegin UniversityMunicipality of GroningenFFGAFRY
        A1P028: AffiliationMunicipality / Public BodiesSME / IndustryResearch Center / UniversityMunicipality / Public BodiesOtherOther
        A1P028: Other
        A1P029: Emailgiavasoglou@kifissia.grgerhard.hofer@e-sieben.atcem.keskin@ozyegin.edu.trJasper.tonen@groningen.nlchristoph.gollner@ffg.atmarkus.olofsgard@afry.com
        Contact person for other special topics
        A1P030: NameStavros Zapantis - vice mayorM. Pınar Mengüç
        A1P031: Emailstavros.zapantis@gmail.compinar.menguc@ozyegin.edu.tr
        Pursuant to the General Data Protection RegulationYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy production
        • Energy efficiency,
        • Energy production,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Waste management
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Waste management,
        • Indoor air quality,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Waste management
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        A2P001: Other
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsLEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste documentEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamslink based regulation of electricity grid
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000YesNoNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceYesNoNo
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoNoNoYes
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationNot included, the campus is a non car area except emergenciesMobility, till now, is not included in the energy model.
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]1.86
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]1.45
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesnoyesnonoyes
        A2P011: PV - specify production in GWh/annum [GWh/annum]
        A2P011: Windnononononono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydronononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnononononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnononoyesnoyes
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnononoyesnono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatnononoyesnono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPnononoyesnono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_peat_heatnononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnononoyesnono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centers
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]3.5
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnononononono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernononononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnonoyesnonono
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.00045547
        A2P018: Windnononononono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydronononononono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnononononono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernononononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnononononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnononononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary000000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Security
        A2P022: Health
        A2P022: Education
        A2P022: Mobility
        A2P022: Energy
        A2P022: Water
        A2P022: Economic development
        A2P022: Housing and Community
        A2P022: Waste
        A2P022: Other
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsnonoyesyesyesyes
        A2P023: Solar thermal collectorsnononoyesyesno
        A2P023: Wind Turbinesnonoyesnonono
        A2P023: Geothermal energy systemnononoyesnono
        A2P023: Waste heat recoverynononoyesnono
        A2P023: Waste to energynononoyesnono
        A2P023: Polygenerationnononononono
        A2P023: Co-generationnonoyesnonono
        A2P023: Heat Pumpnonoyesyesyesno
        A2P023: Hydrogennononononono
        A2P023: Hydropower plantnononononono
        A2P023: Biomassnononononono
        A2P023: Biogasnononononono
        A2P023: Other
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)nonoyesyesyesyes
        A2P024: Energy management systemnonoyesyesnono
        A2P024: Demand-side managementnonoyesnonoyes
        A2P024: Smart electricity gridnonononoyesyes
        A2P024: Thermal Storagenononoyesnono
        A2P024: Electric Storagenonoyesyesnono
        A2P024: District Heating and Coolingnonoyesyesnono
        A2P024: Smart metering and demand-responsive control systemsnonoyesyesyesyes
        A2P024: P2P – buildingsnononononono
        A2P024: Other
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnonononoyesno
        A2P025: Energy efficiency measures in historic buildingsnononoyesnono
        A2P025: High-performance new buildingsnonoyesyesnono
        A2P025: Smart Public infrastructure (e.g. smart lighting)nononoyesyesno
        A2P025: Urban data platformsnononoyesnono
        A2P025: Mobile applications for citizensnonononoyesno
        A2P025: Building services (HVAC & Lighting)nonoyesnonono
        A2P025: Smart irrigationnonoyesnonono
        A2P025: Digital tracking for waste disposalnononononono
        A2P025: Smart surveillancenonoyesnonono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)nononononono
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononononono
        A2P026: e-Mobilitynonoyesyesyesno
        A2P026: Soft mobility infrastructures and last mile solutionsnonoyesnonono
        A2P026: Car-free areanonoyesnonono
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notes
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesYesNo
        A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEnergy Performance Certificate
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesYesNo
        A2P029: If yes, please specify and/or enter notesLEED BD+C, LEED NC CAMPUS
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC)
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies
        • Promotion of energy communities (REC/CEC)
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategy
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods,
        • Biogas
        A3P003: OtherBoiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible Pricing
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesCarbon and Energy Neutrality
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviourUnder LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.In Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Innovative business models,
        • Blockchain
        • Local trading
        A3P006: Other
        A3P007: Social models
        A3P007: Social models
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Citizen Social Research,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance
        • Co-creation / Citizen engagement strategies
        • Behavioural Change / End-users engagement,
        • Citizen/owner involvement in planning and maintenance
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • City Vision 2050,
        • SECAP Updates,
        • Building / district Certification
        • Strategic urban planning,
        • District Energy plans,
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning
        A3P008: Other“zero volumes” structural plan (2015), Covenant of Mayors Sustainable Energy Action Plan (2011)
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral,
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Greening strategies,
        • Cool Materials
        • Energy Neutral
        • Energy Neutral,
        • Carbon-free
        A3P009: Other
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspectsISO 45001, ISO 14001, ISO 50001, Zero Waste PolicyAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionThe campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentThe purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaUrban areaSuburban areaUrban areaSuburban area
        B1P004: Type of district
        B2P004: Type of district
        • Renovation
        • Renovation
        • Renovation
        • New construction
        B1P005: Case Study Context
        B1P005: Case Study Context
        • Re-use / Transformation Area,
        • New Development
        • Retrofitting Area
        • Retrofitting Area
        • New Development
        B1P006: Year of construction
        B1P006: Year of construction2024
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential9800
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential9800
        B1P011: Population density before intervention
        B1P011: Population density before intervention0034000
        B1P012: Population density after intervention
        B1P012: Population density after intervention0034.337771548704000
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnonononoyesno
        B1P013 - Residential: Specify the sqm [m²]20200
        B1P013: Officenoyesnononono
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynononononono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnoyesnononono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnonoyesnonono
        B1P013 - Institutional: Specify the sqm [m²]285.400
        B1P013: Natural areasnononononoyes
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnononononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernononononono
        B1P013 - Other: Specify the sqm [m²]
        B1P014: Building and Land Use after intervention
        B1P014: Residentialnoyesnonoyesno
        B1P014 - Residential: Specify the sqm [m²]20200
        B1P014: Officenoyesnononono
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynononononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnoyesnononono
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnonoyesnonono
        B1P014 - Institutional: Specify the sqm [m²]280000
        B1P014: Natural areasnononononono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnononononono
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernononononono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
        B2P002: Installation life time
        B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
        B2P003: Scale of action
        B2P003: ScaleDistrictDistrict
        B2P004: Operator of the installation
        B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?No
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Civic
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabMunicipality
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        • Academia,
        • Private,
        • Industrial,
        • Other
        B2P009: Otherresearch companies, monitoring company, ict company
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Buildings,
        • Demand-side management,
        • Energy storage,
        • Energy networks,
        • Waste management,
        • Lighting,
        • E-mobility,
        • Information and Communication Technologies (ICT),
        • Social interactions,
        • Business models
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Tools for prototyping and modelling
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        • Execution plan,
        • Available data,
        • Type of measured data,
        • Equipment,
        • Level of access
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy,
        • Social,
        • Economical / Financial
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        • Energy modelling,
        • Social models,
        • Business and financial models
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important
        C1P001: Storage systems and E-mobility market penetration1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important
        C1P001: Decreasing costs of innovative materials4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
        C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important
        C1P001: The ability to predict Multiple Benefits1 - Unimportant4 - Important3 - Moderately important1 - Unimportant2 - Slightly important
        C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important
        C1P001: Social acceptance (top-down)5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant4 - Important
        C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important
        C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant4 - Important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P001: Availability of RES on site (Local RES)1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need4 - Important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
        C1P002: Economic growth need2 - Slightly important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P002: Energy autonomy/independence5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant2 - Slightly important
        C1P002: Any other DRIVING FACTOR1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P003: Lack of public participation3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant3 - Moderately important
        C1P003:Long and complex procedures for authorization of project activities5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
        C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
        C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant
        C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant
        C1P005: Regulatory instability3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P005: Non-effective regulations4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Insufficient or insecure financial incentives4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P005: Shortage of proven and tested solutions and examples1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriersAir Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant
        C1P007: Deficient planning3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important
        C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P007: Lack of well-defined process4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important
        C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Grid congestion, grid instability4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant
        C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia4 - Important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P008: Lack of values and interest in energy optimization measurements5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P008: Low acceptance of new projects and technologies5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P008: Difficulty of finding and engaging relevant actors5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant4 - Important
        C1P008: Lack of trust beyond social network4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
        C1P008: Rebound effect4 - Important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant
        C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
        C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant5 - Very important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P009: Lack of awareness among authorities1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important
        C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant4 - Important3 - Moderately important1 - Unimportant2 - Slightly important
        C1P009: High costs of design, material, construction, and installation1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P010: Insufficient external financial support and funding for project activities1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P010: Economic crisis1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Risk and uncertainty1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important
        C1P010: Lack of consolidated and tested business models1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important
        C1P010: Limited access to capital and cost disincentives1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant
        C1P011: Energy price distortion1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant
        C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Design/demand aggregation
        C1P012: Research & Innovation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        C1P012: Financial/Funding
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: Analyst, ICT and Big Data
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        C1P012: Business process management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading
        • Design/demand aggregation
        C1P012: Urban Services providers
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Design/demand aggregation
        C1P012: Real Estate developers
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Construction/implementation
        • Construction/implementation
        C1P012: Design/Construction companies
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Construction/implementation
        • Design/demand aggregation
        C1P012: End‐users/Occupants/Energy Citizens
        • Monitoring/operation/management
        • None
        • Monitoring/operation/management
        C1P012: Social/Civil Society/NGOs
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation
        • Design/demand aggregation
        C1P012: Industry/SME/eCommerce
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Construction/implementation
        C1P012: Other
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)