Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Uncompare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Uncompare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Vienna, Am Kempelenpark
Espoo, Leppävaara district, Sello center
Oulu, Kaukovainio
Salzburg, Gneis district
Maia, Sobreiro Social Housing
Istanbul, Kadikoy district, Caferaga
Groningen, PED North
Barcelona, SEILAB & Energy SmartLab
Findhorn, the Park
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityVienna, Am KempelenparkEspoo, Leppävaara district, Sello centerOulu, KaukovainioSalzburg, Gneis districtMaia, Sobreiro Social HousingIstanbul, Kadikoy district, CaferagaGroningen, PED NorthBarcelona, SEILAB & Energy SmartLabFindhorn, the Park
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesyesyesnoyesnonoyes
PED relevant case studyyesnonononononononono
PED Lab.nononononoyesnoyesyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyesyesyesnoyes
Annual energy surplusnoyesnonoyesnonoyesnoyes
Energy communityyesnononoyesnoyesyesyesyes
Circularitynononoyesnononoyesnoyes
Air quality and urban comfortyesnononoyesnonononono
Electrificationyesnonoyesnonononoyesyes
Net-zero energy costnononononononononono
Net-zero emissionnononononononoyesyesyes
Self-sufficiency (energy autonomous)nonononononononoyesno
Maximise self-sufficiencynonoyesnonoyesnononoyes
Othernonononononononoyesno
Other (A1P004)Green IT
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseImplementation PhaseIn operationCompletedPlanning PhasePlanning PhaseImplementation PhaseIn operationIn operation
A1P006: Start Date
A1P006: Start date07/1609/1901/2010/2101/2012/1801/201101/62
A1P007: End Date
A1P007: End date02/2510/2201/2410/2412/2212/2302/2013
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • General statistical datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • General statistical datasets
  • Monitoring data available within the districts,
  • Meteorological open data
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
    • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf
      • Alpagut, B., Lopez Romo, A., Hernández, P., Tabanoğlu, O., & Hermoso Martinez, N. (2021). A GIS-Based Multicriteria Assessment for Identification of Positive Energy Districts Boundary in Cities. Energies, 14(22), 7517.
      • TNO, Hanze, RUG,
      • Ped noord book
        A1P011: Geographic coordinates
        X Coordinate (longitude):23.81458816.39529224.810125.51759508409350713.041216-8.37355729.026319526875176.5351212.1-3.6099
        Y Coordinate (latitude):38.07734948.17359860.217964.9928809817313247.77101941.13580440.9884139524746153.23484641.357.6530
        A1P012: Country
        A1P012: CountryGreeceAustriaFinlandFinlandAustriaPortugalTurkeyNetherlandsSpainUnited Kingdom
        A1P013: City
        A1P013: CityMunicipality of KifissiaViennaEspooOuluSalzburgMaiaIstanbulGroningenBarcelona and TarragonaFindhorn
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CsaCwbDfbDfcDfbCsbCsbCfaCsaDwc
        A1P015: District boundary
        A1P015: District boundaryVirtualGeographicGeographicGeographicVirtualGeographicFunctionalVirtualGeographic
        OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodRegional (close to virtual)
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:PrivateMixedMixedPublicMixedMixedPublicMixed
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersSingle OwnerSingle OwnerMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerMultiple Owners
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED65617221370160
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]267956197001997621160521.01
        A1P020: Total ground area
        A1P020: Total ground area [m²]5300060000115172717.132180000
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area0050000000
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenononoyesnononoyesnoyes
        A1P022a: Add the value in EUR if available [EUR]
        A1P022b: Financing - PRIVATE - ESCO schemenononononononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernononononoyesnoyesnono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnononononononononono
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingnononononoyesnoyesnoyes
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingnononononoyesnononono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnononoyesnononoyesnono
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernononononononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnonoyesyesyesyesyesyesnoyes
        A1P022i: Add the value in EUR if available [EUR]629000
        A1P022j: Financing - RESEARCH FUNDING - Nationalnononononononononono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernononononononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: Other
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Job creation,
        • Positive externalities,
        • Boosting local businesses
        • Positive externalities,
        • Boosting local and sustainable production
        • Positive externalities,
        • Other
        • Positive externalities,
        • Boosting local and sustainable production
        • Job creation,
        • Positive externalities,
        • Other
        • Boosting local businesses,
        • Boosting local and sustainable production
        • Job creation,
        • Boosting local and sustainable production
        A1P023: OtherDeveloping and demonstrating new solutionsBoosting social cooperation and social aidBoosting new investors to the area, - Increasing the touristic value of area and urban mobility at the area, - Increasing the regional value (housing price, etc.), - Providing economic advantages by switching to positive energy production
        A1P024: More comments:
        A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]5
        Contact person for general enquiries
        A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaGerhard HoferJaano JuhmenSamuli RinneAbel MagyariAdelina RodriguesMr. Dogan UNERIJasper Tonen, Elisabeth KoopsDr. Jaume Salom, Dra. Cristina CorcheroStefano Nebiolo
        A1P027: OrganizationMunicipality of Kifissia – SPARCS local teame7 energy innovation & engineeringSIEMENS - Data Center ForumCity of OuluABUDMaia Municipality (CM Maia) – Energy and Mobility divisionMunicipality of KadikoyMunicipality of GroningenIRECFindhorn Innovation Research and Education CIC
        A1P028: AffiliationMunicipality / Public BodiesSME / IndustrySME / IndustryMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityResearch Center / University
        A1P028: Other
        A1P029: Emailgiavasoglou@kifissia.grgerhard.hofer@e-sieben.atJaano.juhmen@siemens.comsamuli.rinne@ouka.fimagyari.abel@abud.hudscm.adelina@cm-maia.ptdogan.uneri@kadikoy.bel.trJasper.tonen@groningen.nlJsalom@irec.catstefanonebiolo@gmail.com
        Contact person for other special topics
        A1P030: NameStavros Zapantis - vice mayorSamuli RinneStrassl IngeborgCarolina Gonçalves (AdEPorto)Mrs. Damla MUHCU YILMAZ
        A1P031: Emailstavros.zapantis@gmail.comsamuli.rinne@ouka.fiinge.strassl@salzburg.gv.atcarolinagoncalves@adeporto.eudamla.muhcu@kadikoy.bel.tr
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy production
        • Energy efficiency,
        • Energy production,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Waste management
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Water use,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Waste management
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Waste management
        A2P001: Other
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsDifferent kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.- Dynamic district, and building scale energy modelling - Microclimate modelling - Klimaaktiv certification system - Energy community - Flexibility with shared heating and electricity systemsEnergy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:Energy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsEnergy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoYesNoYesNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceNoNoYesNoNoYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoNoYes
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationNot included. However, there is a charging place for a shared EV in one building.Mobility, till now, is not included in the energy model.– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.10.942.3
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.20.100.331.2
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesnonoyesyesyesyesnoyesyes
        A2P011: PV - specify production in GWh/annum [GWh/annum]0.10.77706640.51
        A2P011: Windnononononononononoyes
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydronononononononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnononononononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnononononononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnononononononononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernononononononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnonononoyesnonoyesnono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnononononoyesyesyesnoyes
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.08
        A2P012: Biomass_heatnononononononoyesnoyes
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
        A2P012: Waste heat+HPnononoyesnononoyesnoyes
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.2
        A2P012: Biomass_peat_heatnononononononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnononononononoyesnono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnononononononononoyes
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernononononononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notesHeat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)Two scenarios are conducted regarding Kadikoy PED energy generation. For the second scenario, just 0.53GWh/annum PV production is proposed.Geothermal heatpump systems, Waste heat from data centers3x225 kW wind turbines + 100 kW PV
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]2.30.8190160.741.2
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]0.491.2
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0-1000
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnonononononononoyesno
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnononononononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnononononononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernononononononononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnononoyesnonoyesnonono
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]-0.26
        A2P018: Windnononoyesnononononono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydronononoyesnononononono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnononoyesnononononono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnononoyesnononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnononononononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernononononononononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnononononononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnononononononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnononoyesnononononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
        A2P019: Waste heat+HPnononononononononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnononononononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnononononononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnononononononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernononononononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary0003.285714285714300-2.2692307692308000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]0
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Security
        A2P022: HealthEncouraging a healthy lifestyleCO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levels
        A2P022: Education
        A2P022: MobilityModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV charging
        A2P022: EnergyFinal energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reductionNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissions
        A2P022: Water
        A2P022: Economic developmentTotal investments, Payback time, Economic value of savingsInvestment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost Comparison
        A2P022: Housing and CommunityDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy povertyAccess to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousness
        A2P022: WasteRecycling rate
        A2P022: OtherSmart Cities strategies, Quality of open data
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsnononoyesyesyesyesyesyesyes
        A2P023: Solar thermal collectorsnononononoyesyesyesnoyes
        A2P023: Wind Turbinesnononononononononoyes
        A2P023: Geothermal energy systemnonononoyesnonoyesnono
        A2P023: Waste heat recoverynononoyesnononoyesnoyes
        A2P023: Waste to energynononononononoyesnono
        A2P023: Polygenerationnononononononononono
        A2P023: Co-generationnononoyesnononononono
        A2P023: Heat Pumpnononoyesnoyesyesyesnoyes
        A2P023: Hydrogennononononononononono
        A2P023: Hydropower plantnononononononononono
        A2P023: Biomassnononoyesnononononoyes
        A2P023: Biogasnononononononononono
        A2P023: Other
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)nononoyesnoyesnoyesyesno
        A2P024: Energy management systemnononoyesyesyesnoyesyesyes
        A2P024: Demand-side managementnonononoyesnonoyesnono
        A2P024: Smart electricity gridnonononoyesnononoyesno
        A2P024: Thermal Storagenononoyesnononoyesnoyes
        A2P024: Electric Storagenononononoyesnoyesyesyes
        A2P024: District Heating and Coolingnononoyesnononoyesnoyes
        A2P024: Smart metering and demand-responsive control systemsnononononoyesnoyesnono
        A2P024: P2P – buildingsnonononoyesnonononono
        A2P024: Other
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnononoyesnoyesnononono
        A2P025: Energy efficiency measures in historic buildingsnononononononoyesnono
        A2P025: High-performance new buildingsnononoyesyesnonoyesnoyes
        A2P025: Smart Public infrastructure (e.g. smart lighting)nononononoyesnoyesnono
        A2P025: Urban data platformsnononoyesnononoyesnono
        A2P025: Mobile applications for citizensnononononononononono
        A2P025: Building services (HVAC & Lighting)nononoyesyesyesnonoyesno
        A2P025: Smart irrigationnononononononononono
        A2P025: Digital tracking for waste disposalnononononoyesnononono
        A2P025: Smart surveillancenononononononononono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)nononoyesnoyesnonoyesno
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononoyesyesnonononono
        A2P026: e-Mobilitynononoyesyesyesnoyesnoyes
        A2P026: Soft mobility infrastructures and last mile solutionsnononoyesnononononono
        A2P026: Car-free areanononononononononono
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notesShared mobility: a mobility point will be implemented and ensure the flexible use of different mobility services.
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesYesYesNoYes
        A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingThe obligatory buildijng energy classificationEnergy Performance CertificateThe Municipal Buildings have an energy certificate, according to the Portuguese legislation.Energy Performance Certificate
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoYesNoNo
        A2P029: If yes, please specify and/or enter notesKlimaaktiv certificate, Greenpass certificate
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC)
        • Smart cities strategies,
        • Urban Renewal Strategies,
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Urban Renewal Strategies,
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Urban Renewal Strategies,
        • Energy master planning (SECAP, etc.),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies,
        • New development strategies
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyCarbon neutrality by 2035
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps
        • Other
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods,
        • Biogas
        • Electrification of Heating System based on Heat Pumps
        A3P003: OtherAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesDeveloping and demonstrating solutions for carbon neutrality-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviourE. g. visualizing energy and water consumptionIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Open data business models,
        • Innovative business models,
        • PPP models,
        • Life Cycle Cost,
        • Circular economy models
        • Innovative business models,
        • Local trading
        • Innovative business models,
        • PPP models,
        • Existing incentives
        • Innovative business models,
        • PPP models,
        • Circular economy models,
        • Demand management Living Lab,
        • Local trading
        • Innovative business models,
        • Blockchain
        • Demand management Living Lab
        A3P006: Other
        A3P007: Social models
        A3P007: Social models
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen Social Research,
        • Policy Forums,
        • Quality of Life,
        • Strategies towards social mix,
        • Affordability,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Quality of Life,
        • Strategies towards social mix,
        • Affordability,
        • Citizen/owner involvement in planning and maintenance
        • Co-creation / Citizen engagement strategies,
        • Prevention of energy poverty,
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen Social Research,
        • Prevention of energy poverty,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Citizen Social Research,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance
        • Digital Inclusion,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Quality of Life
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning,
        • District Energy plans,
        • City Vision 2050,
        • SECAP Updates
        • Building / district Certification
        • City Vision 2050,
        • SECAP Updates,
        • Building / district Certification
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • District Energy plans,
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning,
        • District Energy plans,
        • City Vision 2050,
        • SECAP Updates
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral,
        • Net zero carbon footprint
        • Energy Neutral,
        • Low Emission Zone
        • Energy Neutral,
        • Net zero carbon footprint,
        • Pollutants Reduction
        • Energy Neutral,
        • Low Emission Zone,
        • Net zero carbon footprint
        • Energy Neutral
        • Energy Neutral,
        • Low Emission Zone,
        • Pollutants Reduction,
        • Greening strategies
        • Energy Neutral,
        • Net zero carbon footprint
        A3P009: Other
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionThe original idea is that the area produces at least as much it consumes.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentDeveloping systems towards carbon neutrality. Also urban renewal.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaUrban areaSuburban areaSuburban areaUrban areaRural
        B1P004: Type of district
        B2P004: Type of district
        • Renovation
        • New construction,
        • Renovation
        • New construction
        • Renovation
        • New construction
        B1P005: Case Study Context
        B1P005: Case Study Context
        • Re-use / Transformation Area,
        • New Development
        • New Development,
        • Retrofitting Area
        • New Development
        • Re-use / Transformation Area,
        • Retrofitting Area
        • New Development
        B1P006: Year of construction
        B1P006: Year of construction2024
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential350023.379
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential3500
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P011: Population density before intervention
        B1P011: Population density before intervention0000000000
        B1P012: Population density after intervention
        B1P012: Population density after intervention0000.058333333333333000000
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnononoyesnonoyesnonono
        B1P013 - Residential: Specify the sqm [m²]
        B1P013: Officenoyesnonononoyesnonono
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynononononononononono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnoyesnoyesnonoyesnonono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnononononononononono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasnononoyesyesnonononoyes
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnononoyesnononononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnononononononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernonononononoyesnonono
        B1P013 - Other: Specify the sqm [m²]Cultural Center, Sports Center / Total building and land use data of neigborhood 13,878 residential, 4,441 commercial using before intervention. For project area & 49 building area m2
        B1P014: Building and Land Use after intervention
        B1P014: Residentialnoyesnoyesyesnoyesnonoyes
        B1P014 - Residential: Specify the sqm [m²]
        B1P014: Officenoyesnonononoyesnonoyes
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynononononononononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnoyesnoyesnonoyesnonono
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnononononononononono
        B1P014 - Institutional: Specify the sqm [m²]
        B1P014: Natural areasnononoyesyesnonononoyes
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnononoyesnononononono
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnononononononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernonononononoyesnonono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
        B2P002: Installation life time
        B2P002: Installation life timePermanent installationThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
        B2P003: Scale of action
        B2P003: ScaleVirtualDistrictVirtual
        B2P004: Operator of the installation
        B2P004: Operator of the installationCM Maia, IPMAIA, NEW, AdEP.The Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.IREC
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?NoNoNo
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Strategic
        • Civic
        • Strategic,
        • Private
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabMunicipalityMunicipalityResearch center/University
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        • Academia,
        • Private,
        • Industrial,
        • Citizens, public, NGO,
        • Other
        • Academia,
        • Private,
        • Industrial,
        • Other
        B2P009: OtherEnergy Agencyresearch companies, monitoring company, ict company
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Buildings,
        • Demand-side management,
        • Prosumers,
        • Renewable generation,
        • Energy storage,
        • Efficiency measures,
        • Lighting,
        • E-mobility,
        • Information and Communication Technologies (ICT),
        • Ambient measures,
        • Social interactions
        • Buildings,
        • Demand-side management,
        • Energy storage,
        • Energy networks,
        • Waste management,
        • Lighting,
        • E-mobility,
        • Information and Communication Technologies (ICT),
        • Social interactions,
        • Business models
        • Demand-side management,
        • Energy storage,
        • Energy networks,
        • Efficiency measures,
        • Information and Communication Technologies (ICT)
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Monitoring and evaluation infrastructure,
        • Tools, spaces, events for testing and validation
        • Tools for prototyping and modelling
        • Monitoring and evaluation infrastructure,
        • Tools for prototyping and modelling,
        • Tools, spaces, events for testing and validation
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        • Execution plan,
        • Available data,
        • Type of measured data
        • Execution plan,
        • Available data,
        • Type of measured data,
        • Equipment,
        • Level of access
        • Equipment
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy,
        • Environmental,
        • Social,
        • Economical / Financial
        • Energy,
        • Social,
        • Economical / Financial
        • Energy,
        • Environmental
        B2P016: Execution of operations
        B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
        B2P017: Capacities
        B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
        B2P019: Available tools
        B2P019: Available tools
        • Energy modelling,
        • Social models,
        • Business and financial models,
        • Fundraising and accessing resources,
        • Matching actors
        • Energy modelling,
        • Social models,
        • Business and financial models
        • Energy modelling
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important5 - Very important4 - Important3 - Moderately important1 - Unimportant
        C1P001: Storage systems and E-mobility market penetration1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important4 - Important5 - Very important1 - Unimportant
        C1P001: Decreasing costs of innovative materials4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
        C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant
        C1P001: The ability to predict Multiple Benefits1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important4 - Important3 - Moderately important4 - Important1 - Unimportant
        C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important3 - Moderately important4 - Important1 - Unimportant
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant
        C1P001: Social acceptance (top-down)5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant
        C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important4 - Important2 - Slightly important4 - Important1 - Unimportant
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important3 - Moderately important5 - Very important1 - Unimportant
        C1P001: Availability of RES on site (Local RES)1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important4 - Important4 - Important4 - Important1 - Unimportant
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important2 - Slightly important4 - Important1 - Unimportant
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important5 - Very important3 - Moderately important4 - Important1 - Unimportant
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important5 - Very important4 - Important4 - Important1 - Unimportant
        C1P002: Economic growth need2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant
        C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P002: Energy autonomy/independence5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important2 - Slightly important5 - Very important1 - Unimportant
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important4 - Important3 - Moderately important4 - Important1 - Unimportant
        C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P003: Lack of public participation3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant
        C1P003:Long and complex procedures for authorization of project activities5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important5 - Very important4 - Important5 - Very important1 - Unimportant
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important4 - Important5 - Very important1 - Unimportant
        C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important5 - Very important4 - Important5 - Very important1 - Unimportant
        C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant
        C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important5 - Very important1 - Unimportant
        C1P005: Regulatory instability3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant
        C1P005: Non-effective regulations4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant
        C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant
        C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P005: Insufficient or insecure financial incentives4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P005: Shortage of proven and tested solutions and examples1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriers
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important4 - Important5 - Very important1 - Unimportant
        C1P007: Deficient planning3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
        C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P007: Lack of well-defined process4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important4 - Important1 - Unimportant
        C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important5 - Very important1 - Unimportant
        C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant
        C1P007: Grid congestion, grid instability4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important5 - Very important1 - Unimportant
        C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant
        C1P008: Lack of values and interest in energy optimization measurements5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant
        C1P008: Low acceptance of new projects and technologies5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant
        C1P008: Difficulty of finding and engaging relevant actors5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
        C1P008: Lack of trust beyond social network4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important1 - Unimportant
        C1P008: Rebound effect4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important4 - Important1 - Unimportant
        C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
        C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
        C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
        C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant
        C1P009: Lack of awareness among authorities1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P009: High costs of design, material, construction, and installation1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important5 - Very important1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important5 - Very important1 - Unimportant
        C1P010: Insufficient external financial support and funding for project activities1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant
        C1P010: Economic crisis1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant
        C1P010: Risk and uncertainty1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important3 - Moderately important5 - Very important1 - Unimportant
        C1P010: Lack of consolidated and tested business models1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important3 - Moderately important5 - Very important1 - Unimportant
        C1P010: Limited access to capital and cost disincentives1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant
        C1P011: Energy price distortion1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important5 - Very important4 - Important5 - Very important1 - Unimportant
        C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important5 - Very important1 - Unimportant
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: Research & Innovation
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        C1P012: Financial/Funding
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: Analyst, ICT and Big Data
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Monitoring/operation/management
        C1P012: Business process management
        • Planning/leading,
        • Monitoring/operation/management
        • None
        • Planning/leading
        C1P012: Urban Services providers
        • Planning/leading
        • Planning/leading,
        • Design/demand aggregation
        • Design/demand aggregation,
        • Monitoring/operation/management
        C1P012: Real Estate developers
        • Design/demand aggregation,
        • Construction/implementation
        • None
        • Construction/implementation
        C1P012: Design/Construction companies
        • Design/demand aggregation
        • Construction/implementation
        • Construction/implementation
        C1P012: End‐users/Occupants/Energy Citizens
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        C1P012: Social/Civil Society/NGOs
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation
        C1P012: Industry/SME/eCommerce
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Other
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)