Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Uncompare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Uncompare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Uncompare
Vienna, Am Kempelenpark PED Case Study Uncompare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Vienna, Am Kempelenpark
Leipzig, Baumwollspinnerei district
Innsbruck, Campagne-Areal
Lund, Brunnshög district
Borlänge, Rymdgatan’s Residential Portfolio
Espoo, Leppävaara district, Sello center
Lublin
Uden, Loopkantstraat
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityVienna, Am KempelenparkLeipzig, Baumwollspinnerei districtInnsbruck, Campagne-ArealLund, Brunnshög districtBorlänge, Rymdgatan’s Residential PortfolioEspoo, Leppävaara district, Sello centerLublinUden, Loopkantstraat
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesnoyesnoyesyesno
PED relevant case studyyesnonoyesnoyesnonoyes
PED Lab.nonononononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyesyesyesyes
Annual energy surplusnoyesnonoyesyesnoyesyes
Energy communityyesnononoyesyesnoyesno
Circularitynonononoyesnonoyesno
Air quality and urban comfortyesnoyesnoyesnonoyesno
Electrificationyesnoyesnoyesyesnonoyes
Net-zero energy costnononononononoyesno
Net-zero emissionnononoyesyesnonoyesno
Self-sufficiency (energy autonomous)nononononononoyesno
Maximise self-sufficiencynononononoyesyesyesno
Othernonoyesnoyesnononono
Other (A1P004)Net-zero emission; Annual energy surplusHolistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030;
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseImplementation PhaseCompletedIn operationPlanning PhaseImplementation PhasePlanning PhaseIn operation
A1P006: Start Date
A1P006: Start date07/1604/16201509/1906/17
A1P007: End Date
A1P007: End date02/2504/22204010/2205/23
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • General statistical datasets
  • General statistical datasets,
  • GIS open datasets,
  • Vehicle registration datasets
A1P009: OtherGIS open dataset is under construction
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
        • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
        • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf
        • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
        • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
        • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
        • https://www.synikia.eu/no/bibliotek/
        A1P011: Geographic coordinates
        X Coordinate (longitude):23.81458816.39529212.31845811.42434673814025613.23246940076959915.39449524.810122.56845.6191
        Y Coordinate (latitude):38.07734948.17359851.32649247.27147078672910455.7198979220719360.48660960.217951.246551.6606
        A1P012: Country
        A1P012: CountryGreeceAustriaGermanyAustriaSwedenSwedenFinlandPolandNetherlands
        A1P013: City
        A1P013: CityMunicipality of KifissiaViennaLeipzigInnsbruckLundBorlängeEspooLublinUden
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CsaCwbDfbDfbDfbDsbDfbCfbCfb
        A1P015: District boundary
        A1P015: District boundaryVirtualGeographicFunctionalGeographicGeographicGeographicGeographicGeographicGeographic
        OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodGeographic
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:PrivateMixedPublicMixedPrivatePrivate
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle Owner
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED62420010551
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]17000222771500000370026795621664.732360
        A1P020: Total ground area
        A1P020: Total ground area [m²]3000011351150000099455300072833.473860
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area001210501
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenonononoyesnononoyes
        A1P022a: Add the value in EUR if available [EUR]999999997804440
        A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernonononononononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnonononoyesnononono
        A1P022d: Add the value in EUR if available [EUR]1000000
        A1P022e: Financing - PUBLIC - National fundingnonononoyesnononono
        A1P022e: Add the value in EUR if available [EUR]30000000
        A1P022f: Financing - PUBLIC - Regional fundingnonononoyesnononono
        A1P022f: Add the value in EUR if available [EUR]30000000
        A1P022g: Financing - PUBLIC - Municipal fundingnonononoyesnononono
        A1P022g: Add the value in EUR if available [EUR]180000000
        A1P022h: Financing - PUBLIC - Othernonononononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnonononoyesnoyesnono
        A1P022i: Add the value in EUR if available [EUR]2000000629000
        A1P022j: Financing - RESEARCH FUNDING - Nationalnononoyesnonononono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: Other
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Job creation,
        • Other
        • Other
        • Positive externalities,
        • Boosting local businesses,
        • Boosting consumption of local and sustainable products
        • Job creation,
        • Positive externalities,
        • Boosting local businesses
        • Job creation,
        • Positive externalities,
        • Boosting local businesses,
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products
        A1P023: OtherSustainable and replicable business models regarding renewable energy systemsCreate affordable appartments for the citizensWorld class sustainable living and research environments
        A1P024: More comments:
        A1P024: More comments:Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2Lublin PED Area is geographically bounded and the ambition is to reach Self-Sufficiency. There is a shopping centre with a large rooftop area for solar generation and there are also an empty lot (just on the east side of the building) and a carpark area (on the north side) next to the commercial centre. These areas can also be evaluated for on-site (on the ground – or canopies for cars) energy generation. There are also new built (mainly in 2012) residential blocks with high efficiency and this district is so-called an “eco-district”. Thanks to the District Heating Grid (DHN), all buildings are connected to each other the network has potential for sharing mechanisms in the PED Area. Another opportunity for renewable energy is that these buildings are connected to more or less the end point of DHN and for this reason, a waste heat potential from the return pipe may also be considered. There are also small size residentials, that are not connected to the DHN, around the PED area and this enlightened the technical team for exporting energy from PED to these areas with a new infrastructure.The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]7804440
        Contact person for general enquiries
        A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaGerhard HoferSimon BaumGeorgios DermentzisMarkus PaulssonJingchun ShenJaano JuhmenDorota Wolińska-PietrzakTonje Healey Trulsrud
        A1P027: OrganizationMunicipality of Kifissia – SPARCS local teame7 energy innovation & engineeringCENERO Energy GmbHUniversity of InnsbruckCity of LundHögskolan DalarnaSIEMENS - Data Center ForumLublin MunicipalityNorwegian University of Science and Technology (NTNU)
        A1P028: AffiliationMunicipality / Public BodiesSME / IndustryOtherResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversitySME / IndustryMunicipality / Public BodiesResearch Center / University
        A1P028: OtherCENERO Energy GmbH
        A1P029: Emailgiavasoglou@kifissia.grgerhard.hofer@e-sieben.atsib@cenero.deGeorgios.Dermentzis@uibk.ac.atmarkus.paulsson@lund.sejih@du.seJaano.juhmen@siemens.comdwolinska@lublin.eutonje.h.trulsrud@ntnu.no
        Contact person for other special topics
        A1P030: NameStavros Zapantis - vice mayorSimon BaumEva DalmanXingxing Zhang
        A1P031: Emailstavros.zapantis@gmail.comsib@cenero.deeva.dalman@lund.sexza@du.se
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy production
        • Energy efficiency,
        • Energy production,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Waste management
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        • Energy efficiency,
        • Energy production,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Water use,
        • Waste management,
        • Construction materials,
        • Other
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Waste management,
        • Indoor air quality,
        • Construction materials
        A2P001: OtherWalkability and biking
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsThe buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed.LundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions.Load calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMSEE: D4.1 - Methodology and Guidelines for PED design https://makingcity.eu/results/#1551708358627-aefa76ef-66b2Energy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materials
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoNoNoNoYes
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceYesYesYesYesNo
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoNoYesNoNoNo
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationToday electrically charged vehicles are included in the energy balance. In the future also other fuels should be included.not included
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]1.650.39250.67770.148
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.655300.036560.109
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]000
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesnoyesyesyesnononoyes
        A2P011: PV - specify production in GWh/annum [GWh/annum]0.420.058
        A2P011: Windnonononoyesnononono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydrononononononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnonononononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnonononononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnononononoyesnonono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
        A2P011: Othernonononononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnonononononononoyes
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnonononononononono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatnonononononononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPnonononoyesnononono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]200
        A2P012: Biomass_peat_heatnonononononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnononononoyesnonono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
        A2P012: Biomass_firewood_thnonononononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernonononononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notes*Annual energy use below is presentedin primary energy consumption
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]2.4210.960.3180.194
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]-20.20550.0368
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnonononononononono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnonononononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnonononononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernononononoyesnonono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnonononoyesnononono
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
        A2P018: Windnonononoyesnononono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydrononononoyesnononono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnonononoyesnononono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnonononononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnonononononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernononononoyesnonono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnonononononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnonononononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnonononononononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnonononononononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnonononononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnonononononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnonononononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernononononoyesnonono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary000000.53839572192513000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]6.93-0.00043
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & SecuritynonePersonal Safety
        A2P022: Healthindoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold.thermal comfort diagramHealthy community
        A2P022: Educationnone
        A2P022: MobilityMaximum 1/3 transport with carnoneSustainable mobility
        A2P022: EnergyapplySpace heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production.Local energy production 150% of energy neednormalized CO2/GHG & Energy intensityNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emission
        A2P022: Water
        A2P022: Economic developmentcost of excess emissionscapital costs, operational cots, overall economic performance (5 KPIs)
        A2P022: Housing and Community50% rental apartments and 50% owner apartmentsdemographic composition, diverse community, social cohesion
        A2P022: Waste
        A2P022: OtherSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsnononoyesyesyesnoyesyes
        A2P023: Solar thermal collectorsnonononoyesyesnonono
        A2P023: Wind Turbinesnonononoyesnononono
        A2P023: Geothermal energy systemnonononoyesyesnonoyes
        A2P023: Waste heat recoverynonononoyesyesnonono
        A2P023: Waste to energynonononononononono
        A2P023: Polygenerationnonononoyesnononono
        A2P023: Co-generationnonononononononono
        A2P023: Heat Pumpnononoyesyesyesnoyesyes
        A2P023: Hydrogennonononoyesnonoyesno
        A2P023: Hydropower plantnonononononononono
        A2P023: Biomassnonononononononono
        A2P023: Biogasnonononononononono
        A2P023: Other
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)nonononoyesyesnoyesno
        A2P024: Energy management systemnonononoyesnonoyesyes
        A2P024: Demand-side managementnonononoyesnonoyesyes
        A2P024: Smart electricity gridnonononoyesnonoyesno
        A2P024: Thermal Storagenononoyesyesyesnoyesno
        A2P024: Electric Storagenonononoyesnonoyesno
        A2P024: District Heating and Coolingnononoyesyesyesnoyesno
        A2P024: Smart metering and demand-responsive control systemsnonononoyesnonoyesyes
        A2P024: P2P – buildingsnononoyesnonononono
        A2P024: Other
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnononononoyesnoyesno
        A2P025: Energy efficiency measures in historic buildingsnononononononoyesno
        A2P025: High-performance new buildingsnononoyesyesnonoyesyes
        A2P025: Smart Public infrastructure (e.g. smart lighting)nonononoyesnonoyesno
        A2P025: Urban data platformsnonononoyesnonoyesno
        A2P025: Mobile applications for citizensnononononononoyesno
        A2P025: Building services (HVAC & Lighting)nononoyesyesyesnoyesyes
        A2P025: Smart irrigationnonononononononono
        A2P025: Digital tracking for waste disposalnonononoyesnononono
        A2P025: Smart surveillancenonononononononono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)nononononononoyesno
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonononoyesnonoyesno
        A2P026: e-Mobilitynonononoyesnonoyesno
        A2P026: Soft mobility infrastructures and last mile solutionsnonononoyesnononono
        A2P026: Car-free areanonononoyesnononono
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notesTest-Concept for bidirectional charging.Walkability
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesYesNoNoYes
        A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingTwo buildings are certified "Passive House new build"Miljöbyggnad silver/guldEPC = 0, energy neutral building
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNoNoNoNo
        A2P029: If yes, please specify and/or enter notes
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC)
        • Smart cities strategies
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Smart cities strategies,
        • Urban Renewal Strategies,
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyCity strategy: Net climate neutrality 2030The study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Biogas
        • Electrification of Heating System based on Heat Pumps,
        • Other
        • Electrification of Heating System based on Heat Pumps,
        • Other
        A3P003: OtherDistrict heating based mainly on heat pumps and renewable sourcesNo gas grid in BrunnshögHeating Grid
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesThe priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems.Local waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars.In our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviourNeed to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection.While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Innovative business models,
        • Other
        • PPP models,
        • Other
        • Open data business models,
        • Life Cycle Cost,
        • Circular economy models,
        • Local trading
        A3P006: Otheroperational savings through efficiency measuresAttractivenes
        A3P007: Social models
        A3P007: Social models
        • Behavioural Change / End-users engagement
        • Co-creation / Citizen engagement strategies,
        • Social incentives,
        • Affordability,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Quality of Life,
        • Strategies towards social mix
        • Strategies towards (local) community-building,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Affordability,
        • Digital Inclusion
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies
        • Co-creation / Citizen engagement strategies,
        • Social incentives,
        • Quality of Life
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • District Energy plans,
        • Building / district Certification
        • City Vision 2050,
        • SECAP Updates
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Other
        • Energy Neutral,
        • Low Emission Zone
        • Net zero carbon footprint,
        • Greening strategies,
        • Sustainable Urban drainage systems (SUDS),
        • Nature Based Solutions (NBS)
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Life Cycle approach,
        • Sustainable Urban drainage systems (SUDS)
        • Energy Neutral,
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Carbon-free,
        • Life Cycle approach,
        • Greening strategies,
        • Nature Based Solutions (NBS)
        A3P009: OtherPositive Energy Balance for the demo site
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspectsThe municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions.
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionExtremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation.Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods.The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.The demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentSince it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial.The aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development.Borlänge city has committed to become the carbon-neutral city by 2030.The need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaUrban areaUrban areaUrban areaUrban areaSuburban area
        B1P004: Type of district
        B2P004: Type of district
        • Renovation
        • New construction
        • New construction
        • Renovation
        • New construction
        B1P005: Case Study Context
        B1P005: Case Study Context
        • Re-use / Transformation Area,
        • New Development
        • Preservation Area
        • Re-use / Transformation Area,
        • New Development
        • New Development
        • Re-use / Transformation Area,
        • Retrofitting Area
        • New Development
        B1P006: Year of construction
        B1P006: Year of construction20221990
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential0100
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential78018000100
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential20006
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential220006
        B1P011: Population density before intervention
        B1P011: Population density before intervention000000000
        B1P012: Population density after intervention
        B1P012: Population density after intervention0000.0687164126508680.0266666666666670.010658622423328000
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnononononoyesnonono
        B1P013 - Residential: Specify the sqm [m²]4360
        B1P013: Officenoyesnonoyesnononono
        B1P013 - Office: Specify the sqm [m²]60000
        B1P013: Industry and Utilitynonononononononono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnoyesnonononononono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnonononononononono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasnonononoyesnononono
        B1P013 - Natural areas: Specify the sqm [m²]2000000
        B1P013: Recreationalnonononononononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnonononononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernonononoyesyesnonono
        B1P013 - Other: Specify the sqm [m²]Outdoor parking: 100000706
        B1P014: Building and Land Use after intervention
        B1P014: Residentialnoyesnoyesyesyesnonoyes
        B1P014 - Residential: Specify the sqm [m²]60000043602394
        B1P014: Officenoyesnonoyesnononono
        B1P014 - Office: Specify the sqm [m²]650000
        B1P014: Industry and Utilitynonononononononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnoyesnoyesnonononono
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnononoyesyesnononono
        B1P014 - Institutional: Specify the sqm [m²]50000
        B1P014: Natural areasnonononononononono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnononoyesyesnononono
        B1P014 - Recreational: Specify the sqm [m²]400000
        B1P014: Dismissed areasnonononononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernononononoyesnonono
        B1P014 - Other: Specify the sqm [m²]706
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definition
        B2P002: Installation life time
        B2P002: Installation life time
        B2P003: Scale of action
        B2P003: ScaleDistrict
        B2P004: Operator of the installation
        B2P004: Operator of the installation
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?Yes
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Strategic
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabMunicipality
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        • Academia,
        • Private,
        • Industrial,
        • Citizens, public, NGO
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Buildings,
        • Demand-side management,
        • Prosumers,
        • Renewable generation,
        • Efficiency measures,
        • Waste management,
        • Water treatment,
        • Lighting,
        • E-mobility,
        • Green areas,
        • Circular economy models
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Monitoring and evaluation infrastructure
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        • Available data
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important3 - Moderately important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important1 - Unimportant2 - Slightly important5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
        C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P001: Storage systems and E-mobility market penetration1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important4 - Important
        C1P001: Decreasing costs of innovative materials4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important4 - Important
        C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
        C1P001: The ability to predict Multiple Benefits1 - Unimportant3 - Moderately important2 - Slightly important4 - Important1 - Unimportant5 - Very important3 - Moderately important
        C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant5 - Very important3 - Moderately important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant2 - Slightly important4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
        C1P001: Social acceptance (top-down)5 - Very important1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important4 - Important1 - Unimportant5 - Very important4 - Important
        C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
        C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant
        C1P001: Availability of RES on site (Local RES)1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant5 - Very important4 - Important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important5 - Very important
        C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important4 - Important1 - Unimportant5 - Very important4 - Important
        C1P002: Economic growth need2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important
        C1P002: Energy autonomy/independence5 - Very important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant2 - Slightly important5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant
        C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant
        C1P003: Lack of public participation3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant
        C1P003:Long and complex procedures for authorization of project activities5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant
        C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
        C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant5 - Very important1 - Unimportant
        C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
        C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important
        C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
        C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant5 - Very important1 - Unimportant
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant
        C1P005: Regulatory instability3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
        C1P005: Non-effective regulations4 - Important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
        C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant
        C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
        C1P005: Insufficient or insecure financial incentives4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
        C1P005: Shortage of proven and tested solutions and examples1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriersUrban area very high buildings (and apartment) density and thus, less available space for renewable sources.?2 - Slightly important
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel4 - Important1 - Unimportant2 - Slightly important5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant
        C1P007: Deficient planning3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant
        C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant
        C1P007: Lack of well-defined process4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
        C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Grid congestion, grid instability4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
        C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
        C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia4 - Important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
        C1P008: Lack of values and interest in energy optimization measurements5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
        C1P008: Low acceptance of new projects and technologies5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
        C1P008: Difficulty of finding and engaging relevant actors5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant
        C1P008: Lack of trust beyond social network4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
        C1P008: Rebound effect4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant
        C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
        C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
        C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
        C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
        C1P009: Lack of awareness among authorities1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
        C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
        C1P009: High costs of design, material, construction, and installation1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
        C1P010: Insufficient external financial support and funding for project activities1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
        C1P010: Economic crisis1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
        C1P010: Risk and uncertainty1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important
        C1P010: Lack of consolidated and tested business models1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
        C1P010: Limited access to capital and cost disincentives1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant
        C1P011: Energy price distortion1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant
        C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading
        • Planning/leading,
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Planning/leading
        • Planning/leading,
        • Design/demand aggregation
        C1P012: Research & Innovation
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Design/demand aggregation
        • Planning/leading
        • Design/demand aggregation
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Financial/Funding
        • Planning/leading,
        • Construction/implementation
        • Construction/implementation
        • None
        • None
        C1P012: Analyst, ICT and Big Data
        • Monitoring/operation/management
        • Monitoring/operation/management
        • None
        • None
        C1P012: Business process management
        • Design/demand aggregation,
        • Construction/implementation
        • None
        • None
        C1P012: Urban Services providers
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        • None
        C1P012: Real Estate developers
        • Planning/leading
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation
        • None
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Design/Construction companies
        • Design/demand aggregation,
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        • None
        • None
        • Planning/leading,
        • Design/demand aggregation
        C1P012: End‐users/Occupants/Energy Citizens
        • Planning/leading,
        • Design/demand aggregation
        • Monitoring/operation/management
        • Monitoring/operation/management
        • None
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Social/Civil Society/NGOs
        • Planning/leading
        • None
        • Monitoring/operation/management
        • None
        C1P012: Industry/SME/eCommerce
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        • None
        C1P012: Other
        • None
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)