Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Uncompare
Innsbruck, Campagne-Areal PED Relevant Case Study Uncompare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Uncompare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Uncompare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Évora, Portugal
Istanbul, Kadikoy district, Caferaga
Leipzig, Baumwollspinnerei district
Schönbühel-Aggsbach, Schönbühel an der Donau
Innsbruck, Campagne-Areal
Lund, Brunnshög district
Freiburg, Waldsee
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityÉvora, PortugalIstanbul, Kadikoy district, CaferagaLeipzig, Baumwollspinnerei districtSchönbühel-Aggsbach, Schönbühel an der DonauInnsbruck, Campagne-ArealLund, Brunnshög districtFreiburg, Waldsee
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesyesnonoyesyes
PED relevant case studyyesyesnonoyesyesnono
PED Lab.noyesnononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynonoyesyesyesyesyesyes
Annual energy surplusnoyesnonononoyesno
Energy communityyesyesyesnoyesnoyesyes
Circularitynonononononoyesno
Air quality and urban comfortyesnonoyesnonoyesno
Electrificationyesnonoyesnonoyesyes
Net-zero energy costnonononoyesnonono
Net-zero emissionnononononoyesyesyes
Self-sufficiency (energy autonomous)nononononononono
Maximise self-sufficiencynonononoyesnonono
Othernononoyesnonoyesno
Other (A1P004)Net-zero emission; Annual energy surplusHolistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030;
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseImplementation PhasePlanning PhaseImplementation PhaseImplementation PhaseCompletedIn operationPlanning Phase
A1P006: Start Date
A1P006: Start date10/1901/2004/16201511/21
A1P007: End Date
A1P007: End date09/2412/2204/22204011/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
A1P009: OtherGIS open dataset is under construction
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • Alpagut, B., Lopez Romo, A., Hernández, P., Tabanoğlu, O., & Hermoso Martinez, N. (2021). A GIS-Based Multicriteria Assessment for Identification of Positive Energy Districts Boundary in Cities. Energies, 14(22), 7517.
        • Data from the local energy provider available (restricted usage for some data points because of data security reasons,
        • renewable energy potential,
        • own calculations based on publicly available data,
        • Some data can be found in https://geoportal.freiburg.de/freigis/
        A1P011: Geographic coordinates
        X Coordinate (longitude):23.814588-7.90937729.0263195268751712.31845815.396911.42434673814025613.2324694007695997.885857135842917
        Y Coordinate (latitude):38.07734938.57080440.9884139524746151.32649248.275247.27147078672910455.7198979220719347.986535207080045
        A1P012: Country
        A1P012: CountryGreecePortugalTurkeyGermanyAustriaAustriaSwedenGermany
        A1P013: City
        A1P013: CityMunicipality of KifissiaÉvoraIstanbulLeipzigSchönbühel an der DonauInnsbruckLundFreiburg im Breisgau
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CsaCsaCsbDfbDfbDfbDfbCfb
        A1P015: District boundary
        A1P015: District boundaryVirtualGeographicGeographicFunctionalGeographicGeographicGeographicVirtual
        OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodGeographic
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:MixedMixedPrivateMixedPublicMixed
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple Owners
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED132042002941
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]11605217000477222771500000284070
        A1P020: Total ground area
        A1P020: Total ground area [m²]11517273000024501135115000004920000
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area00010210
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenonononoyesnoyesno
        A1P022a: Add the value in EUR if available [EUR]99999999
        A1P022b: Financing - PRIVATE - ESCO schemenononononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernononononononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnonononononoyesno
        A1P022d: Add the value in EUR if available [EUR]1000000
        A1P022e: Financing - PUBLIC - National fundingnonononoyesnoyesno
        A1P022e: Add the value in EUR if available [EUR]30000000
        A1P022f: Financing - PUBLIC - Regional fundingnonononoyesnoyesno
        A1P022f: Add the value in EUR if available [EUR]30000000
        A1P022g: Financing - PUBLIC - Municipal fundingnonononononoyesyes
        A1P022g: Add the value in EUR if available [EUR]180000000
        A1P022h: Financing - PUBLIC - Othernononononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnoyesyesnononoyesyes
        A1P022i: Add the value in EUR if available [EUR]199982752000000
        A1P022j: Financing - RESEARCH FUNDING - Nationalnononononoyesnoyes
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: Other
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Job creation,
        • Positive externalities,
        • Other
        • Job creation,
        • Other
        • Other
        A1P023: OtherBoosting new investors to the area, - Increasing the touristic value of area and urban mobility at the area, - Increasing the regional value (housing price, etc.), - Providing economic advantages by switching to positive energy productionSustainable and replicable business models regarding renewable energy systemsCreate affordable appartments for the citizensWorld class sustainable living and research environments
        A1P024: More comments:
        A1P024: More comments:Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
        Contact person for general enquiries
        A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaJoão Bravo DiasMr. Dogan UNERISimon BaumGhazal EtminanGeorgios DermentzisMarkus PaulssonDr. Annette Steingrube
        A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamEDP LabelecMunicipality of KadikoyCENERO Energy GmbHGhazal.Etminan@ait.ac.atUniversity of InnsbruckCity of LundFraunhofer Institute for solar energy systems
        A1P028: AffiliationMunicipality / Public BodiesSME / IndustryMunicipality / Public BodiesOtherResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesResearch Center / University
        A1P028: OtherCENERO Energy GmbH
        A1P029: Emailgiavasoglou@kifissia.grjoao.bravodias@edp.ptdogan.uneri@kadikoy.bel.trsib@cenero.deGhazal.Etminan@ait.ac.atGeorgios.Dermentzis@uibk.ac.atmarkus.paulsson@lund.seAnnette.Steingrube@ise.fraunhofer.de
        Contact person for other special topics
        A1P030: NameStavros Zapantis - vice mayorMrs. Damla MUHCU YILMAZSimon BaumEva Dalman
        A1P031: Emailstavros.zapantis@gmail.comdamla.muhcu@kadikoy.bel.trsib@cenero.deeva.dalman@lund.se
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Waste management,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility
        • Energy efficiency,
        • Energy production,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Water use,
        • Waste management,
        • Construction materials,
        • Other
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Waste management
        A2P001: OtherWalkability and biking
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy modelingThe buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed.LundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions.Energy system modeling
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoYesNoNoNoYes
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceYesNoYesYesYesYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceYesNoNoYesYes
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationToday electrically charged vehicles are included in the energy balance. In the future also other fuels should be included.All energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutrality
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.941.650.0660.3925135.715
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.100.0120.6553031.76
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]00
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesnoyesyesyesyesyesno
        A2P011: PV - specify production in GWh/annum [GWh/annum]0.510.42
        A2P011: Windnonononononoyesno
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydronononononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnononononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnononononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnononononononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernononononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnononononononono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnonoyesnonononono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.08
        A2P012: Biomass_heatnononononononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPnonononononoyesno
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]200
        A2P012: Biomass_peat_heatnononononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnononononononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnononononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernononononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notesTwo scenarios are conducted regarding Kadikoy PED energy generation. For the second scenario, just 0.53GWh/annum PV production is proposed.53 MW PV potential in all three quarters; no other internal renewable energy potentials known
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]0.742.4210.0790.96132.5
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]0.490.0011-2
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnononononononono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnononononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnononononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernononononononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnonoyesnoyesnoyesno
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]-0.26
        A2P018: Windnonononoyesnoyesno
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydrononononoyesnoyesno
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnonononoyesnoyesno
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnononononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnononononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernononononononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnononononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnononononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnononononononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnononononononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnononononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnononononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnonononoyesnonono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernononononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary00-2.269230769230800000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]4
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Security
        A2P022: Healthindoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold.
        A2P022: Education
        A2P022: MobilityMaximum 1/3 transport with caryes
        A2P022: EnergyapplySpace heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production.Local energy production 150% of energy needyes
        A2P022: Water
        A2P022: Economic development
        A2P022: Housing and CommunitySpecify the associated KPIs50% rental apartments and 50% owner apartmentsyes
        A2P022: Waste
        A2P022: Other
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsnoyesyesnoyesyesyesyes
        A2P023: Solar thermal collectorsnoyesyesnononoyesyes
        A2P023: Wind Turbinesnonononononoyesno
        A2P023: Geothermal energy systemnonononononoyesyes
        A2P023: Waste heat recoverynonononononoyesyes
        A2P023: Waste to energynononononononoyes
        A2P023: Polygenerationnonononononoyesno
        A2P023: Co-generationnononononononoyes
        A2P023: Heat Pumpnonoyesnoyesyesyesyes
        A2P023: Hydrogennonononononoyesyes
        A2P023: Hydropower plantnononononononoyes
        A2P023: Biomassnononononononoyes
        A2P023: Biogasnononononononoyes
        A2P023: Other
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)noyesnonononoyesyes
        A2P024: Energy management systemnoyesnonoyesnoyesyes
        A2P024: Demand-side managementnonononononoyesyes
        A2P024: Smart electricity gridnoyesnonononoyesyes
        A2P024: Thermal Storagenoyesnononoyesyesyes
        A2P024: Electric Storagenoyesnonononoyesyes
        A2P024: District Heating and Coolingnononononoyesyesyes
        A2P024: Smart metering and demand-responsive control systemsnoyesnonononoyesyes
        A2P024: P2P – buildingsnoyesnonoyesyesnoyes
        A2P024: Other
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnonononoyesnonoyes
        A2P025: Energy efficiency measures in historic buildingsnoyesnonoyesnonoyes
        A2P025: High-performance new buildingsnononononoyesyesno
        A2P025: Smart Public infrastructure (e.g. smart lighting)nonononononoyesno
        A2P025: Urban data platformsnoyesnonononoyesyes
        A2P025: Mobile applications for citizensnoyesnononononono
        A2P025: Building services (HVAC & Lighting)noyesnononoyesyesno
        A2P025: Smart irrigationnononononononono
        A2P025: Digital tracking for waste disposalnoyesnonononoyesno
        A2P025: Smart surveillancenoyesnononononono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)nononononononoyes
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonononononoyesyes
        A2P026: e-Mobilitynoyesnonononoyesyes
        A2P026: Soft mobility infrastructures and last mile solutionsnoyesnonononoyesyes
        A2P026: Car-free areanonononononoyesno
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notesTest-Concept for bidirectional charging.Walkability
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesNoNoYesYesYesNo
        A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingTwo buildings are certified "Passive House new build"Miljöbyggnad silver/guld
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNoNoNoNoNo
        A2P029: If yes, please specify and/or enter notes
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC)
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Urban Renewal Strategies,
        • Energy master planning (SECAP, etc.),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Promotion of energy communities (REC/CEC)
        • Smart cities strategies
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Smart cities strategies
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyCity strategy: Net climate neutrality 2030Climate neutrality by 2035
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods
        • Biogas
        • Electrification of Heating System based on Heat Pumps,
        • Other
        • Electrification of Heating System based on Heat Pumps,
        • Biogas,
        • Hydrogen
        A3P003: OtherDistrict heating based mainly on heat pumps and renewable sourcesNo gas grid in Brunnshög
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesThe priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems.Local waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars.Freiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district level
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviourNeed to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection.Energy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economy
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Innovative business models,
        • PPP models,
        • Circular economy models,
        • Demand management Living Lab,
        • Local trading
        • Innovative business models,
        • Other
        • Local trading,
        • Existing incentives
        • PPP models,
        • Other
        • Demand management Living Lab,
        • Local trading,
        • Existing incentives
        A3P006: Otheroperational savings through efficiency measuresAttractivenes
        A3P007: Social models
        A3P007: Social models
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen Social Research,
        • Prevention of energy poverty,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Behavioural Change / End-users engagement
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Quality of Life,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Co-creation / Citizen engagement strategies,
        • Social incentives,
        • Affordability,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Quality of Life,
        • Strategies towards social mix
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • District Energy plans,
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • District Energy plans
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral,
        • Low Emission Zone,
        • Net zero carbon footprint
        • Other
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Carbon-free
        • Energy Neutral,
        • Low Emission Zone
        • Net zero carbon footprint,
        • Greening strategies,
        • Sustainable Urban drainage systems (SUDS),
        • Nature Based Solutions (NBS)
        A3P009: OtherPositive Energy Balance for the demo site
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspectsThe municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions.
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionThe PED main objective is to achieve the energy transition while preserving cultural heritage and improving citizen’s quality of life.Extremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation.Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods.Assessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case study
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentPOCITYF brings together eight cities (Lightouse and Fellow cities), all having cultural heritage areas in their territory. All are intrinsically motivated to participate in the necessary energy transition not only for their conventional city districts of mixed-used, but also for districts with individually specificities as those belonging in their cultural heritage, which at the moment may be acting as barriers for their further environmental sustainability, but after POCITYF will be acting as a promising building retrofits roadmap for similar and other EU cities.Since it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial.The aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development.City is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regard
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaUrban areaUrban areaRurbanUrban areaUrban areaSuburban area
        B1P004: Type of district
        B2P004: Type of district
        • Renovation
        • Renovation
        • Renovation
        • New construction
        • New construction
        • Renovation
        B1P005: Case Study Context
        B1P005: Case Study Context
        • Preservation Area
        • Re-use / Transformation Area,
        • Retrofitting Area
        • Preservation Area
        • Retrofitting Area,
        • Preservation Area
        • Re-use / Transformation Area,
        • New Development
        • New Development
        • Retrofitting Area
        B1P006: Year of construction
        B1P006: Year of construction2022
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential23.37905898
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential780180005898
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential2000
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential22000
        B1P011: Population density before intervention
        B1P011: Population density before intervention00000000
        B1P012: Population density after intervention
        B1P012: Population density after intervention000000.0687164126508680.0266666666666670.0011987804878049
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnonoyesnoyesnonoyes
        B1P013 - Residential: Specify the sqm [m²]
        B1P013: Officenonoyesnoyesnoyesyes
        B1P013 - Office: Specify the sqm [m²]60000
        B1P013: Industry and Utilitynononononononoyes
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnonoyesnonononoyes
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnononononononoyes
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasnonononononoyesyes
        B1P013 - Natural areas: Specify the sqm [m²]2000000
        B1P013: Recreationalnononononononoyes
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnononononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernonoyesnononoyesno
        B1P013 - Other: Specify the sqm [m²]Cultural Center, Sports Center / Total building and land use data of neigborhood 13,878 residential, 4,441 commercial using before intervention. For project area & 49 building area m2Outdoor parking: 100000
        B1P014: Building and Land Use after intervention
        B1P014: Residentialnonoyesnoyesyesyesyes
        B1P014 - Residential: Specify the sqm [m²]600000
        B1P014: Officenonoyesnoyesnoyesyes
        B1P014 - Office: Specify the sqm [m²]650000
        B1P014: Industry and Utilitynononononononoyes
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnonoyesnonoyesnoyes
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnononononoyesyesyes
        B1P014 - Institutional: Specify the sqm [m²]50000
        B1P014: Natural areasnononononononoyes
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnononononoyesyesyes
        B1P014 - Recreational: Specify the sqm [m²]400000
        B1P014: Dismissed areasnononononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernonoyesnonononono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definition
        B2P002: Installation life time
        B2P002: Installation life time
        B2P003: Scale of action
        B2P003: ScaleDistrict
        B2P004: Operator of the installation
        B2P004: Operator of the installation
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED Lab
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Buildings,
        • Demand-side management,
        • Prosumers,
        • Renewable generation,
        • Energy storage,
        • Energy networks,
        • Waste management,
        • E-mobility,
        • Social interactions,
        • Circular economy models
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Monitoring and evaluation infrastructure,
        • Tools for prototyping and modelling,
        • Tools, spaces, events for testing and validation
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production5 - Very important4 - Important4 - Important4 - Important1 - Unimportant5 - Very important3 - Moderately important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important3 - Moderately important4 - Important2 - Slightly important2 - Slightly important5 - Very important3 - Moderately important
        C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important5 - Very important5 - Very important5 - Very important3 - Moderately important5 - Very important3 - Moderately important
        C1P001: Storage systems and E-mobility market penetration4 - Important3 - Moderately important4 - Important2 - Slightly important3 - Moderately important4 - Important
        C1P001: Decreasing costs of innovative materials4 - Important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important2 - Slightly important
        C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important
        C1P001: The ability to predict Multiple Benefits2 - Slightly important4 - Important2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important
        C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important3 - Moderately important5 - Very important3 - Moderately important2 - Slightly important4 - Important4 - Important
        C1P001: Social acceptance (top-down)5 - Very important4 - Important3 - Moderately important3 - Moderately important4 - Important3 - Moderately important4 - Important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important4 - Important5 - Very important3 - Moderately important5 - Very important4 - Important
        C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important5 - Very important3 - Moderately important4 - Important3 - Moderately important4 - Important
        C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important5 - Very important4 - Important1 - Unimportant4 - Important5 - Very important4 - Important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important
        C1P001: Availability of RES on site (Local RES)3 - Moderately important4 - Important1 - Unimportant3 - Moderately important5 - Very important4 - Important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important4 - Important3 - Moderately important4 - Important3 - Moderately important2 - Slightly important2 - Slightly important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need4 - Important5 - Very important4 - Important5 - Very important5 - Very important5 - Very important4 - Important
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important5 - Very important5 - Very important4 - Important5 - Very important4 - Important
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
        C1P002: Urban re-development of existing built environment3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important
        C1P002: Economic growth need2 - Slightly important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important
        C1P002: Territorial and market attractiveness2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important4 - Important5 - Very important1 - Unimportant
        C1P002: Energy autonomy/independence5 - Very important3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important5 - Very important4 - Important3 - Moderately important2 - Slightly important5 - Very important4 - Important
        C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important
        C1P003: Lack of public participation3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important4 - Important
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
        C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important5 - Very important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Complicated and non-comprehensive public procurement4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important
        C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant2 - Slightly important4 - Important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important4 - Important5 - Very important2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important
        C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important
        C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant5 - Very important3 - Moderately important
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important5 - Very important4 - Important2 - Slightly important1 - Unimportant5 - Very important4 - Important
        C1P005: Regulatory instability3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important
        C1P005: Non-effective regulations4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant
        C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important5 - Very important2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important
        C1P005: Building code and land-use planning hindering innovative technologies4 - Important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
        C1P005: Insufficient or insecure financial incentives4 - Important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
        C1P005: Shortage of proven and tested solutions and examples5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriersUrban area very high buildings (and apartment) density and thus, less available space for renewable sources.?
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel4 - Important2 - Slightly important4 - Important3 - Moderately important2 - Slightly important5 - Very important4 - Important
        C1P007: Deficient planning3 - Moderately important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important
        C1P007: Retrofitting work in dwellings in occupied state4 - Important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
        C1P007: Lack of well-defined process4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
        C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important
        C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Grid congestion, grid instability4 - Important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important
        C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
        C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant2 - Slightly important4 - Important
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia4 - Important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
        C1P008: Lack of values and interest in energy optimization measurements5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important
        C1P008: Low acceptance of new projects and technologies5 - Very important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important
        C1P008: Difficulty of finding and engaging relevant actors5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important4 - Important
        C1P008: Lack of trust beyond social network4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important
        C1P008: Rebound effect4 - Important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
        C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
        C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
        C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important4 - Important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant2 - Slightly important4 - Important1 - Unimportant4 - Important2 - Slightly important
        C1P009: Lack of awareness among authorities2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important
        C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant3 - Moderately important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important
        C1P009: High costs of design, material, construction, and installation4 - Important4 - Important4 - Important5 - Very important5 - Very important4 - Important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important
        C1P010: Insufficient external financial support and funding for project activities1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important
        C1P010: Economic crisis3 - Moderately important4 - Important4 - Important4 - Important5 - Very important3 - Moderately important
        C1P010: Risk and uncertainty2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant5 - Very important4 - Important
        C1P010: Lack of consolidated and tested business models1 - Unimportant5 - Very important4 - Important1 - Unimportant4 - Important3 - Moderately important
        C1P010: Limited access to capital and cost disincentives1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important2 - Slightly important
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives1 - Unimportant5 - Very important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important
        C1P011: Energy price distortion1 - Unimportant5 - Very important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important
        C1P011: Energy market concentration, gatekeeper actors (DSOs)2 - Slightly important4 - Important2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading
        • Planning/leading,
        • Monitoring/operation/management
        • Planning/leading
        C1P012: Research & Innovation
        • Planning/leading,
        • Design/demand aggregation
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Design/demand aggregation
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Financial/Funding
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading
        • Planning/leading,
        • Construction/implementation
        • Construction/implementation
        • None
        C1P012: Analyst, ICT and Big Data
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Planning/leading
        • Monitoring/operation/management
        • Monitoring/operation/management
        • None
        C1P012: Business process management
        • None
        • Planning/leading
        • Design/demand aggregation,
        • Construction/implementation
        • None
        C1P012: Urban Services providers
        • Planning/leading,
        • Design/demand aggregation
        • Planning/leading
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        C1P012: Real Estate developers
        • None
        • Planning/leading
        • Planning/leading
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        C1P012: Design/Construction companies
        • Construction/implementation
        • Planning/leading
        • Design/demand aggregation,
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        • Construction/implementation
        C1P012: End‐users/Occupants/Energy Citizens
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation
        • Monitoring/operation/management
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Social/Civil Society/NGOs
        • Planning/leading,
        • Design/demand aggregation
        • Construction/implementation
        • Planning/leading
        • None
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Industry/SME/eCommerce
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        C1P012: Other
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)