Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Uncompare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Uncompare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Kladno, Sletiště (Sport Area), PED Winter Stadium
Leon, Former Sugar Factory district
Freiburg, Waldsee
Graz, Reininghausgründe
Lublin
City of Espoo, Espoonlahti district, Lippulaiva block
Stor-Elvdal, Campus Evenstad
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityKladno, Sletiště (Sport Area), PED Winter StadiumLeon, Former Sugar Factory districtFreiburg, WaldseeGraz, ReininghausgründeLublinCity of Espoo, Espoonlahti district, Lippulaiva blockStor-Elvdal, Campus Evenstad
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesyesyesyesyesno
PED relevant case studyyesyesnononononoyes
PED Lab.nononononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesnoyesyesyesnoyes
Annual energy surplusnoyesyesnonoyesnoyes
Energy communityyesyesnoyesnoyesnono
Circularitynononononoyesnono
Air quality and urban comfortyesnonononoyesnono
Electrificationyesyesnoyesnononono
Net-zero energy costnononononoyesnono
Net-zero emissionnononoyesnoyesnono
Self-sufficiency (energy autonomous)nononononoyesnono
Maximise self-sufficiencynonoyesnonoyesyesno
Othernononononononoyes
Other (A1P004)Energy-flexibility
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhasePlanning PhasePlanning PhaseImplementation PhasePlanning PhaseIn operationIn operation
A1P006: Start Date
A1P006: Start date202212/1811/21201906/1801/13
A1P007: End Date
A1P007: End date12/2311/24202503/2212/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Open data city platform – different dashboards,
  • General statistical datasets
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • GIS open datasets
  • General statistical datasets,
  • GIS open datasets,
  • Vehicle registration datasets
  • General statistical datasets
  • Monitoring data available within the districts,
  • Meteorological open data
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    •  https://makingcity.eu/wp-content/uploads/2021/12/MakingCity_D4_3_Analysis_of_FWC_candidate_areas_to_become_a_PED_Final.pdf.
    • Data from the local energy provider available (restricted usage for some data points because of data security reasons,
    • renewable energy potential,
    • own calculations based on publicly available data,
    • Some data can be found in https://geoportal.freiburg.de/freigis/
    • E. Rainer, H. Schnitzer, T. Mach, T. Wieland, M. Reiter, L. Fickert, E. Schmautzer, A. Passer, H. Oblak, H. Kreiner, R. Lazar, M. Duschek, et al. (2015): Rahmenplan Energy City Graz-Reininghaus – Subprojekt 2 des Leitprojektes „ECR Energy City Graz – Reininghaus Online: Rahmenplan Energy City Graz-Reininghaus - Haus der Zukunft (nachhaltigwirtschaften.at),
    • H.Schnitzer et al. (2016): Arbeiten und Wohnen in der Smart City Reininghaus, Online: Arbeiten und Wohnen in Graz Reininghaus - Smartcities
    • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
    • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf,
    • www.lippulaiva.fi
    A1P011: Geographic coordinates
    X Coordinate (longitude):23.81458814.09296-5.5847957.88585713584291715.40744022.568424.654311.078770773531746
    Y Coordinate (latitude):38.07734950.1371542.59339147.98653520708004547.060751.246560.149161.42604420399112
    A1P012: Country
    A1P012: CountryGreeceCzech RepublicSpainGermanyAustriaPolandFinlandNorway
    A1P013: City
    A1P013: CityMunicipality of KifissiaKladnoLeonFreiburg im BreisgauGrazLublinEspooEvenstad, Stor-Elvdal municipality
    A1P014: Climate Zone (Köppen Geiger classification)
    A1P014: Climate Zone (Köppen Geiger classification).CsaCfbCsbCfbDfbCfbDfbDwc
    A1P015: District boundary
    A1P015: District boundaryVirtualGeographicGeographicVirtualGeographicGeographicGeographicGeographic
    OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodV1* (ca 8 buildings)
    A1P016: Ownership of the case study/PED Lab
    A1P016: Ownership of the case study/PED Lab:MixedMixedMixedMixedPrivatePrivatePublic
    A1P017: Ownership of the land / physical infrastructure
    A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerSingle Owner
    A1P018: Number of buildings in PED
    A1P018: Number of buildings in PED82129411005922
    A1P019: Conditioned space
    A1P019: Conditioned space [m²]16.0690028407021664.7311200010000
    A1P020: Total ground area
    A1P020: Total ground area [m²]73.145694920000100000072833.47165000
    A1P021: Floor area ratio: Conditioned space / total ground area
    A1P021: Floor area ratio: Conditioned space / total ground area00000010
    A1P022: Financial schemes
    A1P022a: Financing - PRIVATE - Real estatenoyesnonoyesnoyesno
    A1P022a: Add the value in EUR if available [EUR]
    A1P022b: Financing - PRIVATE - ESCO schemenoyesnononononono
    A1P022b: Add the value in EUR if available [EUR]
    A1P022c: Financing - PRIVATE - Othernononononononono
    A1P022c: Add the value in EUR if available [EUR]
    A1P022d: Financing - PUBLIC - EU structural fundingnoyesnononononono
    A1P022d: Add the value in EUR if available [EUR]
    A1P022e: Financing - PUBLIC - National fundingnonononoyesnonoyes
    A1P022e: Add the value in EUR if available [EUR]
    A1P022f: Financing - PUBLIC - Regional fundingnononononononono
    A1P022f: Add the value in EUR if available [EUR]
    A1P022g: Financing - PUBLIC - Municipal fundingnoyesnoyesyesnonono
    A1P022g: Add the value in EUR if available [EUR]
    A1P022h: Financing - PUBLIC - Othernononononononono
    A1P022h: Add the value in EUR if available [EUR]
    A1P022i: Financing - RESEARCH FUNDING - EUnoyesnoyesnonoyesno
    A1P022i: Add the value in EUR if available [EUR]308875
    A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesnoyesnononoyes
    A1P022j: Add the value in EUR if available [EUR]
    A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononono
    A1P022k: Add the value in EUR if available [EUR]
    A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
    A1P022l: Add the value in EUR if available [EUR]
    A1P022: Other
    A1P023: Economic Targets
    A1P023: Economic Targets
    • Job creation,
    • Positive externalities
    • Job creation,
    • Boosting local businesses,
    • Boosting consumption of local and sustainable products
    • Job creation,
    • Positive externalities,
    • Boosting local businesses,
    • Boosting local and sustainable production,
    • Boosting consumption of local and sustainable products
    • Job creation,
    • Positive externalities,
    • Boosting local businesses
    • Boosting local businesses,
    • Boosting local and sustainable production
    A1P023: Other
    A1P024: More comments:
    A1P024: More comments:The “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning.Lublin PED Area is geographically bounded and the ambition is to reach Self-Sufficiency. There is a shopping centre with a large rooftop area for solar generation and there are also an empty lot (just on the east side of the building) and a carpark area (on the north side) next to the commercial centre. These areas can also be evaluated for on-site (on the ground – or canopies for cars) energy generation. There are also new built (mainly in 2012) residential blocks with high efficiency and this district is so-called an “eco-district”. Thanks to the District Heating Grid (DHN), all buildings are connected to each other the network has potential for sharing mechanisms in the PED Area. Another opportunity for renewable energy is that these buildings are connected to more or less the end point of DHN and for this reason, a waste heat potential from the return pipe may also be considered. There are also small size residentials, that are not connected to the DHN, around the PED area and this enlightened the technical team for exporting energy from PED to these areas with a new infrastructure.The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVs
    A1P025: Estimated PED case study / PED LAB costs
    A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
    Contact person for general enquiries
    A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaDavid ŠkorňaBegoña Gonzalo OrdenDr. Annette SteingrubeKatharina SchwarzDorota Wolińska-PietrzakElina EkelundÅse Lekang Sørensen
    A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamMěsto KladnoMunicipality of LeonFraunhofer Institute for solar energy systemsStadtLABOR, Innovationen für urbane Lebensqualität GmbHLublin MunicipalityCitycon OyjSINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities
    A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesOtherResearch Center / UniversitySME / IndustryMunicipality / Public BodiesSME / IndustryResearch Center / University
    A1P028: OtherMunicipality of Leon - ILRUV
    A1P029: Emailgiavasoglou@kifissia.grdavid.skorna@mestokladno.czbegona.gonzalo@aytoleon.esAnnette.Steingrube@ise.fraunhofer.dekatharina.schwarz@stadtlaborgraz.atdwolinska@lublin.euElina.ekelund@citycon.comase.sorensen@sintef.no
    Contact person for other special topics
    A1P030: NameStavros Zapantis - vice mayorMichal KuzmičMonica Prada CorralHans SchnitzerElina Ekelund
    A1P031: Emailstavros.zapantis@gmail.commichal.kuzmic@cvut.czMonica.Prada@ilruv.eshans.schnitzer@stadtlaborgraz.atElina.ekelund@citycon.com
    Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
    A2P001: Fields of application
    A2P001: Fields of application
    • Energy production
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies,
    • Indoor air quality
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Waste management
    • Energy efficiency,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Water use,
    • Indoor air quality,
    • Other
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Indoor air quality
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies,
    • Construction materials
    A2P001: OtherUrban Management; Air Quality
    A2P002: Tools/strategies/methods applied for each of the above-selected fields
    A2P002: Tools/strategies/methods applied for each of the above-selected fieldsTrnsys, PV modelling tools, CADEnergy efficiency: - buildings energy retrofit Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; Energy flexibility: - testing share energy solutions (public-private stakeholders) Digital technologies - smart city platform - smart energy management E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation.Energy system modelingEnergy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the districtSEE: D4.1 - Methodology and Guidelines for PED design https://makingcity.eu/results/#1551708358627-aefa76ef-66b2Energy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider ElectricCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.
    A2P003: Application of ISO52000
    A2P003: Application of ISO52000NoNoYesNoNoYesNo
    A2P004: Appliances included in the calculation of the energy balance
    A2P004: Appliances included in the calculation of the energy balanceYesNoYesYesYesYesYes
    A2P005: Mobility included in the calculation of the energy balance
    A2P005: Mobility included in the calculation of the energy balanceNoNoYesYesNoNoYes
    A2P006: Description of how mobility is included (or not included) in the calculation
    A2P006: Description of how mobility is included (or not included) in the calculationNot yet included.All energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutrality- Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets)Mobility is not included in the energy model.At Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.
    A2P007: Annual energy demand in buildings / Thermal demand
    A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]1.43.49135.7155.50.77
    A2P008: Annual energy demand in buildings / Electric Demand
    A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.30.5731.765.80.76
    A2P009: Annual energy demand for e-mobility
    A2P009: Annual energy demand for e-mobility [GWh/annum]
    A2P010: Annual energy demand for urban infrastructure
    A2P010: Annual energy demand for urban infrastructure [GWh/annum]
    A2P011: Annual renewable electricity production on-site during target year
    A2P011: PVyesyesyesnoyesnoyesyes
    A2P011: PV - specify production in GWh/annum [GWh/annum]1.11.240.540.065
    A2P011: Windnononononononono
    A2P011: Wind - specify production in GWh/annum [GWh/annum]
    A2P011: Hydrononoyesnonononono
    A2P011: Hydro - specify production in GWh/annum [GWh/annum]1.28
    A2P011: Biomass_elnononononononoyes
    A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
    A2P011: Biomass_peat_elnononononononono
    A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
    A2P011: PVT_elnonoyesnonononono
    A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.28
    A2P011: Othernononononononono
    A2P011: Other - specify production in GWh/annum [GWh/annum]
    A2P012: Annual renewable thermal production on-site during target year
    A2P012: Geothermalnonononoyesnoyesno
    A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]5
    A2P012: Solar Thermalnonononoyesnonoyes
    A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.045
    A2P012: Biomass_heatnononononononoyes
    A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.35
    A2P012: Waste heat+HPnoyesnonoyesnonono
    A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]1.7
    A2P012: Biomass_peat_heatnononononononono
    A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: PVT_thnonoyesnonononono
    A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_firewood_thnononononononono
    A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Othernonoyesnonononono
    A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
    A2P013: Renewable resources on-site - Additional notes
    A2P013: Renewable resources on-site - Additional notesWaste heat from cooling the ice rink.53 MW PV potential in all three quarters; no other internal renewable energy potentials knownGroundwater (used for heat pumps)Listed values are measurements from 2018. Renewable energy share is increasing.
    A2P014: Annual energy use
    A2P014: Annual energy use [GWh/annum]2.1132.511.31.500
    A2P015: Annual energy delivered
    A2P015: Annual energy delivered [GWh/annum]5.761
    A2P016: Annual non-renewable electricity production on-site during target year
    A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
    A2P017: Annual non-renewable thermal production on-site during target year
    A2P017: Gasnononononononono
    A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Coalnononononononono
    A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Oilnononononononono
    A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Othernononononononono
    A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P018: Annual renewable electricity imports from outside the boundary during target year
    A2P018: PVnonononoyesnonono
    A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
    A2P018: Windnonononoyesnonono
    A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
    A2P018: Hydrononononoyesnonono
    A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_elnononononononono
    A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_peat_elnononononononono
    A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: PVT_elnononononononono
    A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Othernonononononoyesno
    A2P018 - Other: specify production in GWh/annum if available [GWh/annum]5.26
    A2P019: Annual renewable thermal imports from outside the boundary during target year
    A2P019: Geothermalnononononononono
    A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Solar Thermalnonononoyesnonono
    A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_heatnonononoyesnonono
    A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Waste heat+HPnonononoyesnonono
    A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_peat_heatnononononononono
    A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: PVT_thnononononononono
    A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_firewood_thnononononononono
    A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Othernononononononono
    A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
    A2P020: Share of RES on-site / RES outside the boundary
    A2P020: Share of RES on-site / RES outside the boundary0000001.05323193916350
    A2P021: GHG-balance calculated for the PED
    A2P021: GHG-balance calculated for the PED [tCO2/annum]-1040.0360
    A2P022: KPIs related to the PED case study / PED Lab
    A2P022: Safety & Security
    A2P022: Health
    A2P022: Education
    A2P022: Mobilityyesx
    A2P022: EnergyEnergy demand (heating and hot water), Energy demand (cooling), Cooling demand, Distributin losses, PV production, RES production, OER, Primafry Non-renewable energy balance, AMR, HMR, CO2 balanceyesxOn-site energy ratio
    A2P022: Waterx
    A2P022: Economic developmentInvestment cost, Caputal cost, Operation cost, payback period, NPV, cummulated cash flow, savings, Life cycle, ROI, SROIx
    A2P022: Housing and Communityyesx
    A2P022: Waste
    A2P022: Other
    A2P023: Technological Solutions / Innovations - Energy Generation
    A2P023: Photovoltaicsnoyesyesyesyesyesyesyes
    A2P023: Solar thermal collectorsnonoyesyesnononoyes
    A2P023: Wind Turbinesnononononononono
    A2P023: Geothermal energy systemnononoyesnonoyesno
    A2P023: Waste heat recoverynoyesnoyesyesnoyesno
    A2P023: Waste to energynononoyesnononono
    A2P023: Polygenerationnononononononono
    A2P023: Co-generationnononoyesnononoyes
    A2P023: Heat Pumpnoyesyesyesyesyesnono
    A2P023: Hydrogennononoyesnoyesnono
    A2P023: Hydropower plantnonoyesyesnononono
    A2P023: Biomassnononoyesnononoyes
    A2P023: Biogasnononoyesnononono
    A2P023: OtherThe Co-generation is biomass based.
    A2P024: Technological Solutions / Innovations - Energy Flexibility
    A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesyesyesyesyesyes
    A2P024: Energy management systemnoyesyesyesnoyesyesyes
    A2P024: Demand-side managementnoyesyesyesnoyesnoyes
    A2P024: Smart electricity gridnononoyesnoyesyesno
    A2P024: Thermal Storagenononoyesyesyesyesyes
    A2P024: Electric Storagenononoyesnoyesyesyes
    A2P024: District Heating and Coolingnoyesnoyesyesyesnoyes
    A2P024: Smart metering and demand-responsive control systemsnoyesnoyesnoyesnoyes
    A2P024: P2P – buildingsnonoyesyesnononono
    A2P024: OtherBidirectional electric vehicle (EV) charging (V2G)
    A2P025: Technological Solutions / Innovations - Energy Efficiency
    A2P025: Deep Retrofittingnoyesyesyesnoyesnono
    A2P025: Energy efficiency measures in historic buildingsnonoyesyesnoyesnono
    A2P025: High-performance new buildingsnonononoyesyesyesyes
    A2P025: Smart Public infrastructure (e.g. smart lighting)nonononoyesyesyesno
    A2P025: Urban data platformsnoyesyesyesnoyesnono
    A2P025: Mobile applications for citizensnonononoyesyesnono
    A2P025: Building services (HVAC & Lighting)noyesnononoyesyesno
    A2P025: Smart irrigationnonononoyesnonono
    A2P025: Digital tracking for waste disposalnononononononono
    A2P025: Smart surveillancenononononononono
    A2P025: Other
    A2P026: Technological Solutions / Innovations - Mobility
    A2P026: Efficiency of vehicles (public and/or private)nonoyesyesyesyesnono
    A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononoyesyesyesyesno
    A2P026: e-Mobilitynonoyesyesyesyesyesyes
    A2P026: Soft mobility infrastructures and last mile solutionsnonoyesyesyesnonono
    A2P026: Car-free areanonononoyesnonono
    A2P026: OtherLocal transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries
    A2P027: Mobility strategies - Additional notes
    A2P027: Mobility strategies - Additional notes- Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District management
    A2P028: Energy efficiency certificates
    A2P028: Energy efficiency certificatesYesYesNoYesNoYesYes
    A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingNational standards apply.Energy Performance Certificate - in Spain it is mandatory in order to buy or rent a house or a dwelling)Energieausweis mandatory if buildings/ flats/ apartments are soldEnergy Performance Certificate => Energy efficiency class B (2018 version)Passive house (2 buildings, 4 200 m2, from 2015)
    A2P029: Any other building / district certificates
    A2P029: Any other building / district certificatesNoNoNoYesNoYesYes
    A2P029: If yes, please specify and/or enter notesKlimaaktiv standard  Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/goldLEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD)Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)
    A3P001: Relevant city /national strategy
    A3P001: Relevant city /national strategy
    • Energy master planning (SECAP, etc.),
    • Promotion of energy communities (REC/CEC)
    • Smart cities strategies,
    • Energy master planning (SECAP, etc.),
    • Promotion of energy communities (REC/CEC),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies,
    • Energy master planning (SECAP, etc.)
    • Smart cities strategies
    • Smart cities strategies,
    • Energy master planning (SECAP, etc.),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies,
    • Urban Renewal Strategies,
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Promotion of energy communities (REC/CEC),
    • National / international city networks addressing sustainable urban development and climate neutrality
    A3P002: Quantitative targets included in the city / national strategy
    A3P002: Quantitative targets included in the city / national strategyCarbon neutrality 2050Climate neutrality by 2035City level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supplyRelevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels.
    A3P003: Strategies towards decarbonization of the gas grid
    A3P003: Strategies towards decarbonization of the gas grid
    • Electrification of Heating System based on Heat Pumps
    • Electrification of Heating System based on Heat Pumps,
    • Biogas,
    • Hydrogen
    • Electrification of Heating System based on Heat Pumps,
    • Electrification of Cooking Methods,
    • Biogas
    • Electrification of Heating System based on Heat Pumps,
    • Other
    A3P003: OtherHeating Grid
    A3P004: Identification of needs and priorities
    A3P004: Identification of needs and prioritiesFreiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district levelReininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared offices- Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district.
    A3P005: Sustainable behaviour
    A3P005: Sustainable behaviourEnergy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economy- citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus.For Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners.
    A3P006: Economic strategies
    A3P006: Economic strategies
    • Innovative business models,
    • PPP models,
    • Existing incentives
    • Demand management Living Lab,
    • Local trading,
    • Existing incentives
    • PPP models,
    • Local trading
    • Innovative business models
    A3P006: Other
    A3P007: Social models
    A3P007: Social models
    • Strategies towards (local) community-building,
    • Affordability
    • Strategies towards (local) community-building,
    • Behavioural Change / End-users engagement,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Social incentives,
    • Quality of Life,
    • Affordability,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies
    • Co-creation / Citizen engagement strategies
    • Behavioural Change / End-users engagement,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
    • Other
    A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
    A3P008: Integrated urban strategies
    A3P008: Integrated urban strategies
    • Strategic urban planning,
    • City Vision 2050,
    • SECAP Updates
    • Strategic urban planning,
    • City Vision 2050,
    • SECAP Updates
    • Strategic urban planning,
    • Digital twinning and visual 3D models,
    • District Energy plans
    • Strategic urban planning,
    • City Vision 2050,
    • Building / district Certification
    • City Vision 2050,
    • SECAP Updates
    • Building / district Certification
    A3P008: Other
    A3P009: Environmental strategies
    A3P009: Environmental strategies
    • Net zero carbon footprint
    • Pollutants Reduction,
    • Greening strategies,
    • Sustainable Urban drainage systems (SUDS),
    • Nature Based Solutions (NBS)
    • Energy Neutral,
    • Low Emission Zone,
    • Net zero carbon footprint,
    • Carbon-free,
    • Life Cycle approach,
    • Greening strategies,
    • Nature Based Solutions (NBS)
    • Other
    • Low Emission Zone
    A3P009: OtherCarbon free in terms of energy
    A3P010: Legal / Regulatory aspects
    A3P010: Legal / Regulatory aspectsMobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city.- Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021Campus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.
    B1P001: PED/PED relevant concept definition
    B1P001: PED/PED relevant concept definitionOnsite Energy Ratio > 1Assessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case studyReininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.Lippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production.The biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.
    B1P002: Motivation behind PED/PED relevant project development
    B1P002: Motivation behind PED/PED relevant project developmentStrategic, economicCity is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regardThe Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well.- Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholdersIn line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.
    B1P003: Environment of the case study area
    B2P003: Environment of the case study areaUrban areaUrban areaSuburban areaUrban areaUrban areaRural
    B1P004: Type of district
    B2P004: Type of district
    • New construction,
    • Renovation
    • New construction,
    • Renovation
    • Renovation
    • New construction
    • New construction
    • New construction,
    • Renovation
    B1P005: Case Study Context
    B1P005: Case Study Context
    • New Development,
    • Retrofitting Area
    • Re-use / Transformation Area,
    • Retrofitting Area,
    • Preservation Area
    • Retrofitting Area
    • New Development
    • Re-use / Transformation Area,
    • New Development
    • Retrofitting Area
    B1P006: Year of construction
    B1P006: Year of construction20252022
    B1P007: District population before intervention - Residential
    B1P007: District population before intervention - Residential58980
    B1P008: District population after intervention - Residential
    B1P008: District population after intervention - Residential589810000
    B1P009: District population before intervention - Non-residential
    B1P009: District population before intervention - Non-residential0
    B1P010: District population after intervention - Non-residential
    B1P010: District population after intervention - Non-residential
    B1P011: Population density before intervention
    B1P011: Population density before intervention00000000
    B1P012: Population density after intervention
    B1P012: Population density after intervention0000.00119878048780490.01000
    B1P013: Building and Land Use before intervention
    B1P013: Residentialnoyesyesyesnononono
    B1P013 - Residential: Specify the sqm [m²]
    B1P013: Officenoyesnoyesnononono
    B1P013 - Office: Specify the sqm [m²]
    B1P013: Industry and Utilitynononoyesyesnonono
    B1P013 - Industry and Utility: Specify the sqm [m²]
    B1P013: Commercialnononoyesnonoyesno
    B1P013 - Commercial: Specify the sqm [m²]
    B1P013: Institutionalnononoyesnononono
    B1P013 - Institutional: Specify the sqm [m²]
    B1P013: Natural areasnononoyesyesnoyesno
    B1P013 - Natural areas: Specify the sqm [m²]
    B1P013: Recreationalnoyesnoyesnononono
    B1P013 - Recreational: Specify the sqm [m²]
    B1P013: Dismissed areasnononononononono
    B1P013 - Dismissed areas: Specify the sqm [m²]
    B1P013: Othernonoyesnonononono
    B1P013 - Other: Specify the sqm [m²]
    B1P014: Building and Land Use after intervention
    B1P014: Residentialnoyesyesyesyesnoyesno
    B1P014 - Residential: Specify the sqm [m²]
    B1P014: Officenoyesnoyesyesnonono
    B1P014 - Office: Specify the sqm [m²]
    B1P014: Industry and Utilitynononoyesnononono
    B1P014 - Industry and Utility: Specify the sqm [m²]
    B1P014: Commercialnononoyesyesnoyesno
    B1P014 - Commercial: Specify the sqm [m²]
    B1P014: Institutionalnononoyesyesnonono
    B1P014 - Institutional: Specify the sqm [m²]
    B1P014: Natural areasnononoyesyesnonono
    B1P014 - Natural areas: Specify the sqm [m²]
    B1P014: Recreationalnoyesnoyesyesnonono
    B1P014 - Recreational: Specify the sqm [m²]
    B1P014: Dismissed areasnononononononono
    B1P014 - Dismissed areas: Specify the sqm [m²]
    B1P014: Othernonoyesnonononono
    B1P014 - Other: Specify the sqm [m²]
    B2P001: PED Lab concept definition
    B2P001: PED Lab concept definition
    B2P002: Installation life time
    B2P002: Installation life time
    B2P003: Scale of action
    B2P003: ScaleDistrict
    B2P004: Operator of the installation
    B2P004: Operator of the installation
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P006: Circular Economy Approach
    B2P006: Do you apply any strategy to reuse and recycling the materials?Yes
    B2P006: Other
    B2P007: Motivation for developing the PED Lab
    B2P007: Motivation for developing the PED Lab
    • Strategic
    B2P007: Other
    B2P008: Lead partner that manages the PED Lab
    B2P008: Lead partner that manages the PED LabMunicipality
    B2P008: Other
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Collaborative partners that participate in the PED Lab
    • Academia,
    • Private,
    • Industrial,
    • Citizens, public, NGO
    B2P009: Other
    B2P010: Synergies between the fields of activities
    B2P010: Synergies between the fields of activities
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Available facilities to test urban configurations in PED Lab
    • Buildings,
    • Demand-side management,
    • Prosumers,
    • Renewable generation,
    • Efficiency measures,
    • Waste management,
    • Water treatment,
    • Lighting,
    • E-mobility,
    • Green areas,
    • Circular economy models
    B2P011: Other
    B2P012: Incubation capacities of PED Lab
    B2P012: Incubation capacities of PED Lab
    • Monitoring and evaluation infrastructure
    B2P013: Availability of the facilities for external people
    B2P013: Availability of the facilities for external people
    B2P014: Monitoring measures
    B2P014: Monitoring measures
    • Available data
    B2P015: Key Performance indicators
    B2P015: Key Performance indicators
    • Energy
    B2P016: Execution of operations
    B2P016: Execution of operations
    B2P017: Capacities
    B2P017: Capacities
    B2P018: Relations with stakeholders
    B2P018: Relations with stakeholders
    B2P019: Available tools
    B2P019: Available tools
    B2P019: Available tools
    B2P020: External accessibility
    B2P020: External accessibility
    C1P001: Unlocking Factors
    C1P001: Recent technological improvements for on-site RES production5 - Very important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important4 - Important5 - Very important
    C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant5 - Very important
    C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important5 - Very important
    C1P001: Storage systems and E-mobility market penetration3 - Moderately important1 - Unimportant4 - Important2 - Slightly important5 - Very important4 - Important5 - Very important
    C1P001: Decreasing costs of innovative materials4 - Important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important
    C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important5 - Very important1 - Unimportant
    C1P001: The ability to predict Multiple Benefits2 - Slightly important1 - Unimportant3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant
    C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important1 - Unimportant2 - Slightly important4 - Important5 - Very important4 - Important1 - Unimportant
    C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important3 - Moderately important1 - Unimportant4 - Important5 - Very important5 - Very important3 - Moderately important4 - Important
    C1P001: Social acceptance (top-down)5 - Very important2 - Slightly important1 - Unimportant4 - Important4 - Important5 - Very important2 - Slightly important4 - Important
    C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important2 - Slightly important1 - Unimportant4 - Important5 - Very important5 - Very important2 - Slightly important4 - Important
    C1P001: Presence of integrated urban strategies and plans3 - Moderately important4 - Important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant
    C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important3 - Moderately important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant
    C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important5 - Very important1 - Unimportant3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant
    C1P001: Availability of RES on site (Local RES)4 - Important1 - Unimportant4 - Important3 - Moderately important5 - Very important5 - Very important5 - Very important
    C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important4 - Important1 - Unimportant2 - Slightly important5 - Very important5 - Very important1 - Unimportant3 - Moderately important
    C1P001: Any other UNLOCKING FACTORS4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS (if any)Collaboration with the local partners
    C1P002: Driving Factors
    C1P002: Climate Change adaptation need4 - Important3 - Moderately important1 - Unimportant4 - Important5 - Very important5 - Very important5 - Very important3 - Moderately important
    C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important1 - Unimportant4 - Important5 - Very important5 - Very important4 - Important5 - Very important
    C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
    C1P002: Urban re-development of existing built environment3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important5 - Very important1 - Unimportant1 - Unimportant
    C1P002: Economic growth need2 - Slightly important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
    C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important5 - Very important3 - Moderately important1 - Unimportant
    C1P002: Territorial and market attractiveness2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important2 - Slightly important1 - Unimportant
    C1P002: Energy autonomy/independence5 - Very important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important4 - Important4 - Important
    C1P002: Any other DRIVING FACTOR3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
    C1P002: Any other DRIVING FACTOR (if any)
    C1P003: Administrative barriers
    C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important1 - Unimportant4 - Important5 - Very important5 - Very important4 - Important1 - Unimportant
    C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important2 - Slightly important1 - Unimportant
    C1P003: Lack of public participation3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant
    C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
    C1P003:Long and complex procedures for authorization of project activities5 - Very important4 - Important1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant3 - Moderately important
    C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important
    C1P003: Complicated and non-comprehensive public procurement4 - Important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important
    C1P003: Fragmented and or complex ownership structure3 - Moderately important5 - Very important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important
    C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important4 - Important5 - Very important1 - Unimportant1 - Unimportant
    C1P003: Lack of internal capacities to support energy transition3 - Moderately important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant
    C1P003: Any other Administrative BARRIER4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER (if any)Fragmented financial support; lack of experimental budget for complex projects, etc.
    C1P004: Policy barriers
    C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important
    C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important
    C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
    C1P004: Any other Political BARRIER4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER (if any)Different priorities; overall problematic system od decentralization powers; non-fuctioning model of local development funding, etc.
    C1P005: Legal and Regulatory barriers
    C1P005: Inadequate regulations for new technologies4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important2 - Slightly important5 - Very important
    C1P005: Regulatory instability3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important
    C1P005: Non-effective regulations4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important3 - Moderately important
    C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important2 - Slightly important3 - Moderately important
    C1P005: Building code and land-use planning hindering innovative technologies4 - Important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important2 - Slightly important1 - Unimportant
    C1P005: Insufficient or insecure financial incentives4 - Important5 - Very important1 - Unimportant3 - Moderately important4 - Important5 - Very important2 - Slightly important4 - Important
    C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
    C1P005: Shortage of proven and tested solutions and examples3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important3 - Moderately important
    C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER (if any)
    C1P006: Environmental barriers
    C1P006: Environmental barriers
    C1P007: Technical barriers
    C1P007: Lack of skilled and trained personnel4 - Important4 - Important1 - Unimportant4 - Important2 - Slightly important5 - Very important4 - Important3 - Moderately important
    C1P007: Deficient planning3 - Moderately important4 - Important1 - Unimportant4 - Important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
    C1P007: Retrofitting work in dwellings in occupied state4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important4 - Important3 - Moderately important
    C1P007: Lack of well-defined process4 - Important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P007: Inaccuracy in energy modelling and simulation4 - Important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important2 - Slightly important3 - Moderately important
    C1P007: Lack/cost of computational scalability4 - Important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important
    C1P007: Grid congestion, grid instability4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important
    C1P007: Negative effects of project intervention on the natural environment3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
    C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
    C1P007: Difficult definition of system boundaries3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important
    C1P007: Any other Thecnical BARRIER (if any)Inadequate regulation towards energy transitionEnergy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
    C1P008: Social and Cultural barriers
    C1P008: Inertia4 - Important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
    C1P008: Lack of values and interest in energy optimization measurements5 - Very important4 - Important1 - Unimportant3 - Moderately important4 - Important5 - Very important1 - Unimportant3 - Moderately important
    C1P008: Low acceptance of new projects and technologies5 - Very important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important
    C1P008: Difficulty of finding and engaging relevant actors5 - Very important4 - Important1 - Unimportant4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant
    C1P008: Lack of trust beyond social network4 - Important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
    C1P008: Rebound effect4 - Important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant
    C1P008: Hostile or passive attitude towards environmentalism5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
    C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
    C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important5 - Very important1 - Unimportant4 - Important4 - Important5 - Very important4 - Important4 - Important
    C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
    C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER (if any)
    C1P009: Information and Awareness barriers
    C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important1 - Unimportant4 - Important2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant
    C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important1 - Unimportant2 - Slightly important4 - Important5 - Very important1 - Unimportant3 - Moderately important
    C1P009: Lack of awareness among authorities4 - Important1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant4 - Important
    C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant3 - Moderately important4 - Important5 - Very important3 - Moderately important1 - Unimportant
    C1P009: High costs of design, material, construction, and installation5 - Very important1 - Unimportant4 - Important4 - Important5 - Very important4 - Important5 - Very important
    C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important
    C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
    C1P010: Financial barriers
    C1P010: Hidden costs4 - Important1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important2 - Slightly important5 - Very important
    C1P010: Insufficient external financial support and funding for project activities4 - Important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important5 - Very important
    C1P010: Economic crisis3 - Moderately important1 - Unimportant3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant
    C1P010: Risk and uncertainty4 - Important1 - Unimportant4 - Important2 - Slightly important5 - Very important3 - Moderately important5 - Very important
    C1P010: Lack of consolidated and tested business models4 - Important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important4 - Important5 - Very important
    C1P010: Limited access to capital and cost disincentives1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important3 - Moderately important4 - Important
    C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER (if any)
    C1P011: Market barriers
    C1P011: Split incentives5 - Very important1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant
    C1P011: Energy price distortion5 - Very important1 - Unimportant3 - Moderately important4 - Important5 - Very important3 - Moderately important1 - Unimportant
    C1P011: Energy market concentration, gatekeeper actors (DSOs)5 - Very important1 - Unimportant3 - Moderately important4 - Important5 - Very important3 - Moderately important1 - Unimportant
    C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
    C1P011: Any other Market BARRIER (if any)
    C1P012: Stakeholders involved
    C1P012: Government/Public Authorities
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading
    C1P012: Research & Innovation
    • Planning/leading,
    • Design/demand aggregation
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation
    • Monitoring/operation/management
    C1P012: Financial/Funding
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Construction/implementation
    C1P012: Analyst, ICT and Big Data
    • None
    • Planning/leading,
    • Monitoring/operation/management
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    C1P012: Business process management
    • None
    • None
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading
    C1P012: Urban Services providers
    • Design/demand aggregation
    • None
    • Planning/leading,
    • Construction/implementation,
    • Monitoring/operation/management
    • None
    • None
    C1P012: Real Estate developers
    • Design/demand aggregation
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Monitoring/operation/management
    C1P012: Design/Construction companies
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Construction/implementation
    C1P012: End‐users/Occupants/Energy Citizens
    • Design/demand aggregation
    • Planning/leading,
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    C1P012: Social/Civil Society/NGOs
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Monitoring/operation/management
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • None
    C1P012: Industry/SME/eCommerce
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Construction/implementation
    C1P012: Other
    • None
    • None
    C1P012: Other (if any)
    Summary

    Authors (framework concept)

    Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

    Contributors (to the content)

    Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

    Implemented by

    Boutik.pt: Filipe Martins, Jamal Khan
    Marek Suchánek (Czech Technical University in Prague)