Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Uncompare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Uncompare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Maia, Sobreiro Social Housing
Izmir, District of Karşıyaka
Espoo, Leppävaara district, Sello center
Amsterdam, Buiksloterham PED
Borlänge, Rymdgatan’s Residential Portfolio
Halmstad, Fyllinge
Luxembourg, Betzdorf
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityMaia, Sobreiro Social HousingIzmir, District of KarşıyakaEspoo, Leppävaara district, Sello centerAmsterdam, Buiksloterham PEDBorlänge, Rymdgatan’s Residential PortfolioHalmstad, FyllingeLuxembourg, Betzdorf
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesyesyesnonono
PED relevant case studyyesnonononoyesyesyes
PED Lab.noyesnononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyesnoyes
Annual energy surplusnonoyesnoyesyesnoyes
Energy communityyesnononoyesyesyesyes
Circularitynonononoyesnonoyes
Air quality and urban comfortyesnoyesnonononoyes
Electrificationyesnononoyesyesnoyes
Net-zero energy costnonoyesnonononono
Net-zero emissionnonononoyesnonono
Self-sufficiency (energy autonomous)nononononononono
Maximise self-sufficiencynoyesyesyesnoyesnono
Othernononononononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhasePlanning PhaseImplementation PhaseImplementation PhasePlanning PhasePlanning PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date10/2110/2209/1911/1901/2106/23
A1P007: End Date
A1P007: End date10/2410/2510/2210/2501/3004/26
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • General statistical datasets
  • Monitoring data available within the districts
  • Open data city platform – different dashboards
  • General statistical datasets
A1P009: OtherOtherhttps://smartcity-atelier.eu/about/lighthouse-cities/amsterdam/
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
      • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
      • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf
            A1P011: Geographic coordinates
            X Coordinate (longitude):23.814588-8.37355727.11004924.81014.904115.39449512.920546.361602
            Y Coordinate (latitude):38.07734941.13580438.49605460.217952.367660.48660956.6519449.682774
            A1P012: Country
            A1P012: CountryGreecePortugalTurkeyFinlandNetherlandsSwedenSwedenLuxembourg
            A1P013: City
            A1P013: CityMunicipality of KifissiaMaiaİzmirEspooAmsterdamBorlängeHalmstadBetzdorf
            A1P014: Climate Zone (Köppen Geiger classification)
            A1P014: Climate Zone (Köppen Geiger classification).CsaCsbCsaDfbCfbDsbDwbCfb
            A1P015: District boundary
            A1P015: District boundaryVirtualVirtualGeographicGeographicFunctionalGeographicGeographicGeographic
            OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
            A1P016: Ownership of the case study/PED Lab
            A1P016: Ownership of the case study/PED Lab:PublicPrivateMixedMixedMixedPublic
            A1P017: Ownership of the land / physical infrastructure
            A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersSingle Owner
            A1P018: Number of buildings in PED
            A1P018: Number of buildings in PED22215601025024
            A1P019: Conditioned space
            A1P019: Conditioned space [m²]102795267956285003700173.8
            A1P020: Total ground area
            A1P020: Total ground area [m²]32600530009945
            A1P021: Floor area ratio: Conditioned space / total ground area
            A1P021: Floor area ratio: Conditioned space / total ground area00350000
            A1P022: Financial schemes
            A1P022a: Financing - PRIVATE - Real estatenonononoyesnoyesno
            A1P022a: Add the value in EUR if available [EUR]
            A1P022b: Financing - PRIVATE - ESCO schemenononononononono
            A1P022b: Add the value in EUR if available [EUR]
            A1P022c: Financing - PRIVATE - Othernoyesnononononono
            A1P022c: Add the value in EUR if available [EUR]
            A1P022d: Financing - PUBLIC - EU structural fundingnononononononono
            A1P022d: Add the value in EUR if available [EUR]
            A1P022e: Financing - PUBLIC - National fundingnoyesnononononono
            A1P022e: Add the value in EUR if available [EUR]
            A1P022f: Financing - PUBLIC - Regional fundingnoyesnononononono
            A1P022f: Add the value in EUR if available [EUR]
            A1P022g: Financing - PUBLIC - Municipal fundingnononononononono
            A1P022g: Add the value in EUR if available [EUR]
            A1P022h: Financing - PUBLIC - Othernononononononoyes
            A1P022h: Add the value in EUR if available [EUR]
            A1P022i: Financing - RESEARCH FUNDING - EUnoyesyesyesyesnoyesno
            A1P022i: Add the value in EUR if available [EUR]1193355629000
            A1P022j: Financing - RESEARCH FUNDING - Nationalnonoyesnonononono
            A1P022j: Add the value in EUR if available [EUR]
            A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononono
            A1P022k: Add the value in EUR if available [EUR]
            A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
            A1P022l: Add the value in EUR if available [EUR]
            A1P022: Other
            A1P023: Economic Targets
            A1P023: Economic Targets
            • Positive externalities,
            • Boosting local and sustainable production
            • Positive externalities,
            • Boosting local and sustainable production
            • Job creation,
            • Positive externalities,
            • Boosting local businesses
            • Boosting local businesses,
            • Boosting local and sustainable production,
            • Boosting consumption of local and sustainable products
            • Positive externalities,
            • Boosting local businesses,
            • Boosting consumption of local and sustainable products
            • Boosting local and sustainable production
            • Other
            A1P023: Other
            A1P024: More comments:
            A1P024: More comments:
            A1P025: Estimated PED case study / PED LAB costs
            A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
            Contact person for general enquiries
            A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaAdelina RodriguesOzlem SenyolJaano JuhmenOmar ShafqatJingchun ShenMarkus OlofsgårdJulien Bertucci
            A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamMaia Municipality (CM Maia) – Energy and Mobility divisionKarsiyaka MunicipalitySIEMENS - Data Center ForumAmsterdam University of Applied SciencesHögskolan DalarnaAFRYSNHBM
            A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesMunicipality / Public BodiesSME / IndustryResearch Center / UniversityResearch Center / UniversityOtherMunicipality / Public Bodies
            A1P028: Other
            A1P029: Emailgiavasoglou@kifissia.grdscm.adelina@cm-maia.ptozlemkocaer2@gmail.comJaano.juhmen@siemens.como.shafqat@hva.nljih@du.semarkus.olofsgard@afry.comjulien.bertucci@snhbm.lu
            Contact person for other special topics
            A1P030: NameStavros Zapantis - vice mayorCarolina Gonçalves (AdEPorto)Hasan Burak CavkaOmar ShafqatXingxing Zhang
            A1P031: Emailstavros.zapantis@gmail.comcarolinagoncalves@adeporto.euhasancavka@iyte.edu.tro.shafqat@hva.nlxza@du.se
            Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
            A2P001: Fields of application
            A2P001: Fields of application
            • Energy production
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Urban comfort (pollution, heat island, noise level etc.),
            • Digital technologies
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • Urban comfort (pollution, heat island, noise level etc.)
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Digital technologies,
            • Water use,
            • Waste management,
            • Construction materials
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Construction materials
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Digital technologies
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Urban comfort (pollution, heat island, noise level etc.),
            • Digital technologies,
            • Water use,
            • Indoor air quality,
            • Construction materials
            A2P001: Other
            A2P002: Tools/strategies/methods applied for each of the above-selected fields
            A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:Methods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.City vision, Innovation AteliersLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMlink based regulation of electricity grid
            A2P003: Application of ISO52000
            A2P003: Application of ISO52000NoYesYesNoNo
            A2P004: Appliances included in the calculation of the energy balance
            A2P004: Appliances included in the calculation of the energy balanceYesYesNoYesNoNo
            A2P005: Mobility included in the calculation of the energy balance
            A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoYesNo
            A2P006: Description of how mobility is included (or not included) in the calculation
            A2P006: Description of how mobility is included (or not included) in the calculationMobility is not included in the calculations.
            A2P007: Annual energy demand in buildings / Thermal demand
            A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]3.8620.6777
            A2P008: Annual energy demand in buildings / Electric Demand
            A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]1.2260.03656
            A2P009: Annual energy demand for e-mobility
            A2P009: Annual energy demand for e-mobility [GWh/annum]0
            A2P010: Annual energy demand for urban infrastructure
            A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
            A2P011: Annual renewable electricity production on-site during target year
            A2P011: PVyesyesyesnoyesnoyesno
            A2P011: PV - specify production in GWh/annum [GWh/annum]1.028
            A2P011: Windnononononononono
            A2P011: Wind - specify production in GWh/annum [GWh/annum]
            A2P011: Hydronononononononono
            A2P011: Hydro - specify production in GWh/annum [GWh/annum]
            A2P011: Biomass_elnonononoyesnonono
            A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
            A2P011: Biomass_peat_elnononononononono
            A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
            A2P011: PVT_elnononononoyesnono
            A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
            A2P011: Othernononononononono
            A2P011: Other - specify production in GWh/annum [GWh/annum]
            A2P012: Annual renewable thermal production on-site during target year
            A2P012: Geothermalnonononoyesnoyesno
            A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
            A2P012: Solar Thermalnoyesnononononono
            A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
            A2P012: Biomass_heatnonononoyesnonono
            A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
            A2P012: Waste heat+HPnonononoyesnonono
            A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
            A2P012: Biomass_peat_heatnononononononono
            A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
            A2P012: PVT_thnononononoyesnono
            A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
            A2P012: Biomass_firewood_thnononononononono
            A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
            A2P012: Othernononononononono
            A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
            A2P013: Renewable resources on-site - Additional notes
            A2P013: Renewable resources on-site - Additional notes
            A2P014: Annual energy use
            A2P014: Annual energy use [GWh/annum]5.0880.318
            A2P015: Annual energy delivered
            A2P015: Annual energy delivered [GWh/annum]0.2055
            A2P016: Annual non-renewable electricity production on-site during target year
            A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
            A2P017: Annual non-renewable thermal production on-site during target year
            A2P017: Gasnonoyesnoyesnonono
            A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Coalnonononoyesnonono
            A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Oilnonononoyesnonono
            A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Othernononononoyesnono
            A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
            A2P018: Annual renewable electricity imports from outside the boundary during target year
            A2P018: PVnonoyesnoyesnonono
            A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.707
            A2P018: Windnonononoyesnonono
            A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
            A2P018: Hydrononononoyesnonono
            A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
            A2P018: Biomass_elnonononoyesnonono
            A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: Biomass_peat_elnonononoyesnonono
            A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: PVT_elnonononoyesnonono
            A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: Othernononononoyesnono
            A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
            A2P019: Annual renewable thermal imports from outside the boundary during target year
            A2P019: Geothermalnonononoyesnonono
            A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Solar Thermalnonononoyesnonono
            A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_heatnonononoyesnonono
            A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Waste heat+HPnonononoyesnonono
            A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_peat_heatnonononoyesnonono
            A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
            A2P019: PVT_thnonononoyesnonono
            A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_firewood_thnonononoyesnonono
            A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Othernononononoyesnono
            A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
            A2P020: Share of RES on-site / RES outside the boundary
            A2P020: Share of RES on-site / RES outside the boundary001.4540311173975000.5383957219251300
            A2P021: GHG-balance calculated for the PED
            A2P021: GHG-balance calculated for the PED [tCO2/annum]2506.93
            A2P022: KPIs related to the PED case study / PED Lab
            A2P022: Safety & Securitynone
            A2P022: Healththermal comfort diagram
            A2P022: Educationnone
            A2P022: Mobilitynone
            A2P022: Energynormalized CO2/GHG & Energy intensity
            A2P022: Water
            A2P022: Economic developmentcost of excess emissions
            A2P022: Housing and Community
            A2P022: Waste
            A2P022: Other
            A2P023: Technological Solutions / Innovations - Energy Generation
            A2P023: Photovoltaicsnoyesyesnoyesyesyesno
            A2P023: Solar thermal collectorsnoyesnononoyesnono
            A2P023: Wind Turbinesnononononononono
            A2P023: Geothermal energy systemnonononoyesyesnono
            A2P023: Waste heat recoverynonononoyesyesnono
            A2P023: Waste to energynonononoyesnonono
            A2P023: Polygenerationnononononononono
            A2P023: Co-generationnononononononono
            A2P023: Heat Pumpnoyesyesnoyesyesnono
            A2P023: Hydrogennononononononono
            A2P023: Hydropower plantnononononononono
            A2P023: Biomassnonononoyesnonono
            A2P023: Biogasnonononoyesnonono
            A2P023: Other
            A2P024: Technological Solutions / Innovations - Energy Flexibility
            A2P024: A2P024: Information and Communication Technologies (ICT)noyesnonoyesyesyesyes
            A2P024: Energy management systemnoyesnonoyesnonoyes
            A2P024: Demand-side managementnonononoyesnoyesno
            A2P024: Smart electricity gridnonononoyesnoyesno
            A2P024: Thermal Storagenonononoyesyesnono
            A2P024: Electric Storagenoyesnonoyesnonoyes
            A2P024: District Heating and Coolingnonononoyesyesnono
            A2P024: Smart metering and demand-responsive control systemsnoyesnonoyesnoyesno
            A2P024: P2P – buildingsnonononoyesnonono
            A2P024: Other
            A2P025: Technological Solutions / Innovations - Energy Efficiency
            A2P025: Deep Retrofittingnoyesyesnoyesyesnono
            A2P025: Energy efficiency measures in historic buildingsnonononoyesnonono
            A2P025: High-performance new buildingsnonononoyesnonoyes
            A2P025: Smart Public infrastructure (e.g. smart lighting)noyesnonoyesnonono
            A2P025: Urban data platformsnonononoyesnonono
            A2P025: Mobile applications for citizensnonononoyesnonono
            A2P025: Building services (HVAC & Lighting)noyesyesnoyesyesnoyes
            A2P025: Smart irrigationnonononoyesnonono
            A2P025: Digital tracking for waste disposalnoyesnonoyesnonono
            A2P025: Smart surveillancenononononononono
            A2P025: Other
            A2P026: Technological Solutions / Innovations - Mobility
            A2P026: Efficiency of vehicles (public and/or private)noyesnonoyesnonono
            A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonononoyesnonono
            A2P026: e-Mobilitynoyesnonoyesnonoyes
            A2P026: Soft mobility infrastructures and last mile solutionsnonononoyesnonono
            A2P026: Car-free areanonononoyesnonono
            A2P026: Other
            A2P027: Mobility strategies - Additional notes
            A2P027: Mobility strategies - Additional notes
            A2P028: Energy efficiency certificates
            A2P028: Energy efficiency certificatesYesNoNoNoYes
            A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingThe Municipal Buildings have an energy certificate, according to the Portuguese legislation.
            A2P029: Any other building / district certificates
            A2P029: Any other building / district certificatesNoNoNoNoYes
            A2P029: If yes, please specify and/or enter notes
            A3P001: Relevant city /national strategy
            A3P001: Relevant city /national strategy
            • Energy master planning (SECAP, etc.),
            • Promotion of energy communities (REC/CEC)
            • Urban Renewal Strategies,
            • Energy master planning (SECAP, etc.),
            • Promotion of energy communities (REC/CEC),
            • Climate change adaption plan/strategy (e.g. Climate City contract)
            • Energy master planning (SECAP, etc.),
            • Climate change adaption plan/strategy (e.g. Climate City contract),
            • National / international city networks addressing sustainable urban development and climate neutrality
            • Smart cities strategies,
            • Energy master planning (SECAP, etc.),
            • New development strategies,
            • Promotion of energy communities (REC/CEC),
            • Climate change adaption plan/strategy (e.g. Climate City contract),
            • National / international city networks addressing sustainable urban development and climate neutrality
            • Promotion of energy communities (REC/CEC),
            • Climate change adaption plan/strategy (e.g. Climate City contract)
            • Promotion of energy communities (REC/CEC)
            A3P002: Quantitative targets included in the city / national strategy
            A3P002: Quantitative targets included in the city / national strategyKarşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.The study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.
            A3P003: Strategies towards decarbonization of the gas grid
            A3P003: Strategies towards decarbonization of the gas grid
            • Other
            • Electrification of Heating System based on Heat Pumps
            • Electrification of Heating System based on Heat Pumps,
            • Electrification of Cooking Methods,
            • Biogas,
            • Hydrogen
            • Electrification of Heating System based on Heat Pumps
            A3P003: OtherAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.
            A3P004: Identification of needs and priorities
            A3P004: Identification of needs and prioritiesAccording to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.In our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.
            A3P005: Sustainable behaviour
            A3P005: Sustainable behaviourWhile our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.
            A3P006: Economic strategies
            A3P006: Economic strategies
            • Innovative business models,
            • PPP models,
            • Existing incentives
            • Innovative business models,
            • Life Cycle Cost,
            • Circular economy models,
            • Demand management Living Lab,
            • Local trading,
            • Existing incentives
            • Open data business models,
            • Life Cycle Cost,
            • Circular economy models,
            • Local trading
            • Local trading
            A3P006: Other
            A3P007: Social models
            A3P007: Social models
            • Co-creation / Citizen engagement strategies,
            • Prevention of energy poverty,
            • Digital Inclusion,
            • Citizen/owner involvement in planning and maintenance,
            • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
            • Strategies towards (local) community-building,
            • Co-creation / Citizen engagement strategies,
            • Affordability
            • Strategies towards (local) community-building,
            • Co-creation / Citizen engagement strategies,
            • Behavioural Change / End-users engagement,
            • Citizen Social Research,
            • Social incentives,
            • Quality of Life,
            • Digital Inclusion,
            • Citizen/owner involvement in planning and maintenance,
            • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
            • Strategies towards (local) community-building,
            • Behavioural Change / End-users engagement,
            • Social incentives,
            • Affordability,
            • Digital Inclusion
            • Behavioural Change / End-users engagement,
            • Citizen/owner involvement in planning and maintenance
            • Affordability
            A3P007: Other
            A3P008: Integrated urban strategies
            A3P008: Integrated urban strategies
            • City Vision 2050,
            • SECAP Updates,
            • Building / district Certification
            • Digital twinning and visual 3D models,
            • District Energy plans,
            • SECAP Updates
            • Strategic urban planning,
            • Digital twinning and visual 3D models,
            • District Energy plans,
            • City Vision 2050,
            • SECAP Updates,
            • Building / district Certification
            • Strategic urban planning,
            • Digital twinning and visual 3D models,
            • District Energy plans,
            • Building / district Certification
            • Strategic urban planning
            • Building / district Certification
            A3P008: Other
            A3P009: Environmental strategies
            A3P009: Environmental strategies
            • Energy Neutral,
            • Net zero carbon footprint,
            • Pollutants Reduction
            • Energy Neutral,
            • Low Emission Zone,
            • Pollutants Reduction
            • Energy Neutral,
            • Life Cycle approach
            • Low Emission Zone,
            • Net zero carbon footprint,
            • Life Cycle approach,
            • Sustainable Urban drainage systems (SUDS)
            • Energy Neutral,
            • Carbon-free
            A3P009: Other
            A3P010: Legal / Regulatory aspects
            A3P010: Legal / Regulatory aspectsRegulatory sandbox
            B1P001: PED/PED relevant concept definition
            B1P001: PED/PED relevant concept definitionThe pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).Functional PEDThe Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.
            B1P002: Motivation behind PED/PED relevant project development
            B1P002: Motivation behind PED/PED relevant project developmentBrown field development of a former industrial neighbourhood into a low-carbon, smart Positive Energy District with mixed uses.Borlänge city has committed to become the carbon-neutral city by 2030.
            B1P003: Environment of the case study area
            B2P003: Environment of the case study areaUrban areaUrban areaUrban areaSuburban areaRural
            B1P004: Type of district
            B2P004: Type of district
            • Renovation
            • New construction
            • Renovation
            • New construction
            • New construction,
            • Renovation
            B1P005: Case Study Context
            B1P005: Case Study Context
            • Retrofitting Area
            • New Development
            • Re-use / Transformation Area,
            • Retrofitting Area
            • New Development
            • New Development
            B1P006: Year of construction
            B1P006: Year of construction20051990
            B1P007: District population before intervention - Residential
            B1P007: District population before intervention - Residential100
            B1P008: District population after intervention - Residential
            B1P008: District population after intervention - Residential100
            B1P009: District population before intervention - Non-residential
            B1P009: District population before intervention - Non-residential6
            B1P010: District population after intervention - Non-residential
            B1P010: District population after intervention - Non-residential6
            B1P011: Population density before intervention
            B1P011: Population density before intervention00000000
            B1P012: Population density after intervention
            B1P012: Population density after intervention000000.01065862242332800
            B1P013: Building and Land Use before intervention
            B1P013: Residentialnonoyesnonoyesnono
            B1P013 - Residential: Specify the sqm [m²]1027954360
            B1P013: Officenononononononono
            B1P013 - Office: Specify the sqm [m²]
            B1P013: Industry and Utilitynonononoyesnonono
            B1P013 - Industry and Utility: Specify the sqm [m²]
            B1P013: Commercialnononononononono
            B1P013 - Commercial: Specify the sqm [m²]
            B1P013: Institutionalnononononononono
            B1P013 - Institutional: Specify the sqm [m²]
            B1P013: Natural areasnonononononoyesno
            B1P013 - Natural areas: Specify the sqm [m²]
            B1P013: Recreationalnononononononono
            B1P013 - Recreational: Specify the sqm [m²]
            B1P013: Dismissed areasnononononononono
            B1P013 - Dismissed areas: Specify the sqm [m²]
            B1P013: Othernononononoyesnono
            B1P013 - Other: Specify the sqm [m²]706
            B1P014: Building and Land Use after intervention
            B1P014: Residentialnonoyesnoyesyesnono
            B1P014 - Residential: Specify the sqm [m²]1027954360
            B1P014: Officenonononoyesnonono
            B1P014 - Office: Specify the sqm [m²]
            B1P014: Industry and Utilitynononononononono
            B1P014 - Industry and Utility: Specify the sqm [m²]
            B1P014: Commercialnonononoyesnonono
            B1P014 - Commercial: Specify the sqm [m²]
            B1P014: Institutionalnononononononono
            B1P014 - Institutional: Specify the sqm [m²]
            B1P014: Natural areasnononononononono
            B1P014 - Natural areas: Specify the sqm [m²]
            B1P014: Recreationalnonononoyesnonono
            B1P014 - Recreational: Specify the sqm [m²]
            B1P014: Dismissed areasnononononononono
            B1P014 - Dismissed areas: Specify the sqm [m²]
            B1P014: Othernononononoyesnono
            B1P014 - Other: Specify the sqm [m²]706
            B2P001: PED Lab concept definition
            B2P001: PED Lab concept definition
            B2P002: Installation life time
            B2P002: Installation life timePermanent installation
            B2P003: Scale of action
            B2P003: ScaleVirtual
            B2P004: Operator of the installation
            B2P004: Operator of the installationCM Maia, IPMAIA, NEW, AdEP.
            B2P005: Replication framework: Applied strategy to reuse and recycling the materials
            B2P005: Replication framework: Applied strategy to reuse and recycling the materials
            B2P006: Circular Economy Approach
            B2P006: Do you apply any strategy to reuse and recycling the materials?No
            B2P006: Other
            B2P007: Motivation for developing the PED Lab
            B2P007: Motivation for developing the PED Lab
            • Strategic
            B2P007: Other
            B2P008: Lead partner that manages the PED Lab
            B2P008: Lead partner that manages the PED LabMunicipality
            B2P008: Other
            B2P009: Collaborative partners that participate in the PED Lab
            B2P009: Collaborative partners that participate in the PED Lab
            • Academia,
            • Private,
            • Industrial,
            • Citizens, public, NGO,
            • Other
            B2P009: OtherEnergy Agency
            B2P010: Synergies between the fields of activities
            B2P010: Synergies between the fields of activities
            B2P011: Available facilities to test urban configurations in PED Lab
            B2P011: Available facilities to test urban configurations in PED Lab
            • Buildings,
            • Demand-side management,
            • Prosumers,
            • Renewable generation,
            • Energy storage,
            • Efficiency measures,
            • Lighting,
            • E-mobility,
            • Information and Communication Technologies (ICT),
            • Ambient measures,
            • Social interactions
            B2P011: Other
            B2P012: Incubation capacities of PED Lab
            B2P012: Incubation capacities of PED Lab
            • Monitoring and evaluation infrastructure,
            • Tools, spaces, events for testing and validation
            B2P013: Availability of the facilities for external people
            B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
            B2P014: Monitoring measures
            B2P014: Monitoring measures
            • Execution plan,
            • Available data,
            • Type of measured data
            B2P015: Key Performance indicators
            B2P015: Key Performance indicators
            • Energy,
            • Environmental,
            • Social,
            • Economical / Financial
            B2P016: Execution of operations
            B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
            B2P017: Capacities
            B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.
            B2P018: Relations with stakeholders
            B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
            B2P019: Available tools
            B2P019: Available tools
            • Energy modelling,
            • Social models,
            • Business and financial models,
            • Fundraising and accessing resources,
            • Matching actors
            B2P019: Available tools
            B2P020: External accessibility
            B2P020: External accessibility
            C1P001: Unlocking Factors
            C1P001: Recent technological improvements for on-site RES production5 - Very important4 - Important5 - Very important1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant
            C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant
            C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant
            C1P001: Storage systems and E-mobility market penetration4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant
            C1P001: Decreasing costs of innovative materials4 - Important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
            C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
            C1P001: The ability to predict Multiple Benefits4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important1 - Unimportant
            C1P001: The ability to predict the distribution of benefits and impacts4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant
            C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important4 - Important2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important4 - Important1 - Unimportant
            C1P001: Social acceptance (top-down)5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant
            C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important5 - Very important1 - Unimportant2 - Slightly important4 - Important4 - Important1 - Unimportant
            C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant
            C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important4 - Important4 - Important1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant
            C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important4 - Important5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
            C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant
            C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important4 - Important5 - Very important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant
            C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P001: Any other UNLOCKING FACTORS (if any)
            C1P002: Driving Factors
            C1P002: Climate Change adaptation need4 - Important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant
            C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant
            C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant
            C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant
            C1P002: Economic growth need2 - Slightly important4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
            C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
            C1P002: Territorial and market attractiveness2 - Slightly important4 - Important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
            C1P002: Energy autonomy/independence5 - Very important4 - Important5 - Very important1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant
            C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P002: Any other DRIVING FACTOR (if any)
            C1P003: Administrative barriers
            C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important5 - Very important4 - Important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
            C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
            C1P003: Lack of public participation3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
            C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
            C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
            C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
            C1P003: Complicated and non-comprehensive public procurement4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
            C1P003: Fragmented and or complex ownership structure3 - Moderately important5 - Very important5 - Very important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
            C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
            C1P003: Lack of internal capacities to support energy transition3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
            C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P003: Any other Administrative BARRIER (if any)
            C1P004: Policy barriers
            C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important5 - Very important4 - Important1 - Unimportant
            C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant
            C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
            C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P004: Any other Political BARRIER (if any)
            C1P005: Legal and Regulatory barriers
            C1P005: Inadequate regulations for new technologies4 - Important4 - Important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
            C1P005: Regulatory instability3 - Moderately important4 - Important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
            C1P005: Non-effective regulations4 - Important4 - Important5 - Very important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant
            C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important5 - Very important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
            C1P005: Building code and land-use planning hindering innovative technologies4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P005: Insufficient or insecure financial incentives4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant
            C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant
            C1P005: Shortage of proven and tested solutions and examples3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
            C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P005: Any other Legal and Regulatory BARRIER (if any)
            C1P006: Environmental barriers
            C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 12 - Slightly important
            C1P007: Technical barriers
            C1P007: Lack of skilled and trained personnel4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
            C1P007: Deficient planning3 - Moderately important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important1 - Unimportant
            C1P007: Retrofitting work in dwellings in occupied state4 - Important4 - Important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
            C1P007: Lack of well-defined process4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
            C1P007: Inaccuracy in energy modelling and simulation4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
            C1P007: Lack/cost of computational scalability4 - Important4 - Important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
            C1P007: Grid congestion, grid instability4 - Important4 - Important3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant
            C1P007: Negative effects of project intervention on the natural environment3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P007: Difficult definition of system boundaries3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
            C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P007: Any other Thecnical BARRIER (if any)
            C1P008: Social and Cultural barriers
            C1P008: Inertia4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
            C1P008: Lack of values and interest in energy optimization measurements5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
            C1P008: Low acceptance of new projects and technologies5 - Very important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
            C1P008: Difficulty of finding and engaging relevant actors5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant
            C1P008: Lack of trust beyond social network4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
            C1P008: Rebound effect4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
            C1P008: Hostile or passive attitude towards environmentalism5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P008: Any other Social BARRIER (if any)
            C1P009: Information and Awareness barriers
            C1P009: Insufficient information on the part of potential users and consumers4 - Important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant
            C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
            C1P009: Lack of awareness among authorities4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
            C1P009: Information asymmetry causing power asymmetry of established actors4 - Important4 - Important1 - Unimportant4 - Important5 - Very important2 - Slightly important1 - Unimportant
            C1P009: High costs of design, material, construction, and installation4 - Important5 - Very important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
            C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P009: Any other Information and Awareness BARRIER (if any)
            C1P010: Financial barriers
            C1P010: Hidden costs4 - Important4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
            C1P010: Insufficient external financial support and funding for project activities4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
            C1P010: Economic crisis4 - Important5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
            C1P010: Risk and uncertainty4 - Important4 - Important1 - Unimportant4 - Important5 - Very important2 - Slightly important1 - Unimportant
            C1P010: Lack of consolidated and tested business models4 - Important4 - Important1 - Unimportant3 - Moderately important5 - Very important4 - Important1 - Unimportant
            C1P010: Limited access to capital and cost disincentives4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
            C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P010: Any other Financial BARRIER (if any)
            C1P011: Market barriers
            C1P011: Split incentives5 - Very important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
            C1P011: Energy price distortion4 - Important5 - Very important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
            C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
            C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
            C1P011: Any other Market BARRIER (if any)
            C1P012: Stakeholders involved
            C1P012: Government/Public Authorities
            • Monitoring/operation/management
            • Monitoring/operation/management
            • Design/demand aggregation
            C1P012: Research & Innovation
            • Monitoring/operation/management
            • Planning/leading
            C1P012: Financial/Funding
            • None
            C1P012: Analyst, ICT and Big Data
            • Construction/implementation
            • None
            • Monitoring/operation/management
            C1P012: Business process management
            • None
            • Design/demand aggregation
            C1P012: Urban Services providers
            • None
            • Design/demand aggregation
            C1P012: Real Estate developers
            • Design/demand aggregation
            • Construction/implementation
            C1P012: Design/Construction companies
            • None
            • Design/demand aggregation
            C1P012: End‐users/Occupants/Energy Citizens
            • Design/demand aggregation
            • Monitoring/operation/management
            • Monitoring/operation/management
            C1P012: Social/Civil Society/NGOs
            • Monitoring/operation/management
            • Design/demand aggregation
            C1P012: Industry/SME/eCommerce
            • Construction/implementation
            • None
            • Construction/implementation
            C1P012: Other
            C1P012: Other (if any)
            Summary

            Authors (framework concept)

            Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

            Contributors (to the content)

            Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

            Implemented by

            Boutik.pt: Filipe Martins, Jamal Khan
            Marek Suchánek (Czech Technical University in Prague)