Name | Project | Type | Compare |
---|---|---|---|
Romania, Alba Iulia PED | ASCEND – Accelerate poSitive Clean ENergy Districts | PED Case Study | Compare |
Romania, Alba Iulia PED | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Uncompare |
Munich, Harthof district | PED Case Study | Compare | |
Lublin | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Bærum, Eiksveien 116 | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Findhorn, the Park | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Amsterdam, Buiksloterham PED | ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities | PED Case Study | Compare |
Schönbühel-Aggsbach, Schönbühel an der Donau | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Umeå, Ålidhem district | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Aalborg East | PED Relevant Case Study / PED Lab | Compare | |
Ankara, Çamlık District | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study / PED Relevant Case Study | Compare |
Trenčín | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Luxembourg, Betzdorf | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Vantaa, Aviapolis | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Vidin, Himik and Bononia | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Oslo, Verksbyen | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Uden, Loopkantstraat | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Relevant Case Study | Compare |
Zaragoza, Actur | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Relevant Case Study | Compare |
Aarhus, Brabrand | BIPED – Building Intelligent Positive Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Riga, Ķīpsala, RTU smart student city | ExPEDite – Enabling Positive Energy Districts through Digital Twins | PED Case Study | Compare |
Izmir, District of Karşıyaka | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Istanbul, Ozyegin University Campus | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Espoo, Kera | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study / PED Relevant Case Study | Compare |
Borlänge, Rymdgatan’s Residential Portfolio | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Uncompare |
Freiburg, Waldsee | PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district | PED Case Study | Uncompare |
Innsbruck, Campagne-Areal | PED Relevant Case Study | Compare | |
Graz, Reininghausgründe | PED Case Study | Compare | |
Stor-Elvdal, Campus Evenstad | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Relevant Case Study | Compare |
Oulu, Kaukovainio | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Halmstad, Fyllinge | PED Relevant Case Study | Compare | |
Lund, Brunnshög district | PED Case Study | Compare | |
Vienna, Am Kempelenpark | PED Case Study | Uncompare | |
Évora, Portugal | POCITYF – A POsitive Energy CITY Transformation Framework | PED Relevant Case Study / PED Lab | Compare |
Kladno, Sletiště (Sport Area), PED Winter Stadium | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Uncompare |
Groningen, PED South | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Groningen, PED North | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Maia, Sobreiro Social Housing | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Lab | Uncompare |
Lubia (Soria), CEDER-CIEMAT | PED Lab | Compare | |
Tampere, Ilokkaanpuisto district | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study | Compare |
Leon, Former Sugar Factory district | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Istanbul, Kadikoy district, Caferaga | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Espoo, Leppävaara district, Sello center | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Espoo, Espoonlahti district, Lippulaiva block | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Salzburg, Gneis district | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Barcelona, Santa Coloma de Gramenet | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Tartu, City centre area | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study / PED Lab | Compare |
Bologna, Pilastro-Roveri district | GRETA – GReen Energy Transition Actions | PED Relevant Case Study | Compare |
Barcelona, SEILAB & Energy SmartLab | PED Lab | Uncompare | |
Leipzig, Baumwollspinnerei district | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Kifissia, Energy community | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study |
Title | Kifissia, Energy community | Maia, Sobreiro Social Housing | Borlänge, Rymdgatan’s Residential Portfolio | Barcelona, SEILAB & Energy SmartLab | Romania, Alba Iulia PED | Kladno, Sletiště (Sport Area), PED Winter Stadium | Freiburg, Waldsee | Vienna, Am Kempelenpark |
---|---|---|---|---|---|---|---|---|
A1P001: Name of the PED case study / PED Lab | ||||||||
A1P001: Name of the PED case study / PED Lab | Kifissia, Energy community | Maia, Sobreiro Social Housing | Borlänge, Rymdgatan’s Residential Portfolio | Barcelona, SEILAB & Energy SmartLab | Romania, Alba Iulia PED | Kladno, Sletiště (Sport Area), PED Winter Stadium | Freiburg, Waldsee | Vienna, Am Kempelenpark |
A1P002: Map / aerial view / photos / graphic details / leaflet | ||||||||
A1P002: Map / aerial view / photos / graphic details / leaflet |
| |||||||
A1P003: Categorisation of the PED site | ||||||||
PED case study | no | no | no | no | yes | no | yes | yes |
PED relevant case study | yes | no | yes | no | no | yes | no | no |
PED Lab. | no | yes | no | yes | no | no | no | no |
A1P004: Targets of the PED case study / PED Lab | ||||||||
Climate neutrality | no | yes | yes | no | yes | yes | yes | yes |
Annual energy surplus | no | no | yes | no | yes | yes | no | yes |
Energy community | yes | no | yes | yes | yes | yes | yes | no |
Circularity | no | no | no | no | no | no | no | no |
Air quality and urban comfort | yes | no | no | no | yes | no | no | no |
Electrification | yes | no | yes | yes | yes | yes | yes | no |
Net-zero energy cost | no | no | no | no | no | no | no | no |
Net-zero emission | no | no | no | yes | no | no | yes | no |
Self-sufficiency (energy autonomous) | no | no | no | yes | yes | no | no | no |
Maximise self-sufficiency | no | yes | yes | no | yes | no | no | no |
Other | no | no | no | yes | no | no | no | no |
Other (A1P004) | Green IT | |||||||
A1P005: Phase of the PED case study / PED Lab | ||||||||
A1P005: Project Phase of your case study/PED Lab | Planning Phase | Planning Phase | Planning Phase | In operation | Implementation Phase | Planning Phase | Planning Phase | Planning Phase |
A1P006: Start Date | ||||||||
A1P006: Start date | 10/21 | 01/2011 | 01/24 | 2022 | 11/21 | 07/16 | ||
A1P007: End Date | ||||||||
A1P007: End date | 10/24 | 02/2013 | 12/26 | 11/24 | 02/25 | |||
A1P008: Reference Project | ||||||||
A1P008: Reference Project | ||||||||
A1P009: Data availability | ||||||||
A1P009: Data availability |
|
|
|
|
|
| ||
A1P009: Other | ||||||||
A1P010: Sources | ||||||||
Any publication, link to website, deliverable referring to the PED/PED Lab |
|
| ||||||
A1P011: Geographic coordinates | ||||||||
X Coordinate (longitude): | 23.814588 | -8.373557 | 15.394495 | 2.1 | 23.580112098023235 | 14.09296 | 7.885857135842917 | 16.395292 |
Y Coordinate (latitude): | 38.077349 | 41.135804 | 60.486609 | 41.3 | 46.077015278680115 | 50.13715 | 47.986535207080045 | 48.173598 |
A1P012: Country | ||||||||
A1P012: Country | Greece | Portugal | Sweden | Spain | Romania | Czech Republic | Germany | Austria |
A1P013: City | ||||||||
A1P013: City | Municipality of Kifissia | Maia | Borlänge | Barcelona and Tarragona | Alba Iulia | Kladno | Freiburg im Breisgau | Vienna |
A1P014: Climate Zone (Köppen Geiger classification) | ||||||||
A1P014: Climate Zone (Köppen Geiger classification). | Csa | Csb | Dsb | Csa | Dfb | Cfb | Cfb | Cwb |
A1P015: District boundary | ||||||||
A1P015: District boundary | Virtual | Virtual | Geographic | Virtual | Functional | Geographic | Virtual | Geographic |
Other | The energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood | Geographic | V1* (ca 8 buildings) | |||||
A1P016: Ownership of the case study/PED Lab | ||||||||
A1P016: Ownership of the case study/PED Lab: | Public | Mixed | Public | Public | Mixed | Mixed | Private | |
A1P017: Ownership of the land / physical infrastructure | ||||||||
A1P017: Ownership of the land / physical infrastructure: | Multiple Owners | Single Owner | Single Owner | Single Owner | Multiple Owners | Multiple Owners | Single Owner | |
A1P018: Number of buildings in PED | ||||||||
A1P018: Number of buildings in PED | 22 | 10 | 0 | 6 | 8 | 2941 | 6 | |
A1P019: Conditioned space | ||||||||
A1P019: Conditioned space [m²] | 3700 | 284070 | ||||||
A1P020: Total ground area | ||||||||
A1P020: Total ground area [m²] | 9945 | 8423.45 | 4920000 | |||||
A1P021: Floor area ratio: Conditioned space / total ground area | ||||||||
A1P021: Floor area ratio: Conditioned space / total ground area | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
A1P022: Financial schemes | ||||||||
A1P022a: Financing - PRIVATE - Real estate | no | no | no | no | no | yes | no | no |
A1P022a: Add the value in EUR if available [EUR] | ||||||||
A1P022b: Financing - PRIVATE - ESCO scheme | no | no | no | no | no | yes | no | no |
A1P022b: Add the value in EUR if available [EUR] | ||||||||
A1P022c: Financing - PRIVATE - Other | no | yes | no | no | no | no | no | no |
A1P022c: Add the value in EUR if available [EUR] | ||||||||
A1P022d: Financing - PUBLIC - EU structural funding | no | no | no | no | yes | yes | no | no |
A1P022d: Add the value in EUR if available [EUR] | ||||||||
A1P022e: Financing - PUBLIC - National funding | no | yes | no | no | yes | no | no | no |
A1P022e: Add the value in EUR if available [EUR] | ||||||||
A1P022f: Financing - PUBLIC - Regional funding | no | yes | no | no | yes | no | no | no |
A1P022f: Add the value in EUR if available [EUR] | ||||||||
A1P022g: Financing - PUBLIC - Municipal funding | no | no | no | no | yes | yes | yes | no |
A1P022g: Add the value in EUR if available [EUR] | ||||||||
A1P022h: Financing - PUBLIC - Other | no | no | no | no | no | no | no | no |
A1P022h: Add the value in EUR if available [EUR] | ||||||||
A1P022i: Financing - RESEARCH FUNDING - EU | no | yes | no | no | no | yes | yes | no |
A1P022i: Add the value in EUR if available [EUR] | ||||||||
A1P022j: Financing - RESEARCH FUNDING - National | no | no | no | no | no | yes | yes | no |
A1P022j: Add the value in EUR if available [EUR] | ||||||||
A1P022k: Financing - RESEARCH FUNDING - Local/regional | no | no | no | no | no | no | no | no |
A1P022k: Add the value in EUR if available [EUR] | ||||||||
A1P022l: Financing - RESEARCH FUNDING - Other | no | no | no | no | no | no | no | no |
A1P022l: Add the value in EUR if available [EUR] | ||||||||
A1P022: Other | ||||||||
A1P023: Economic Targets | ||||||||
A1P023: Economic Targets |
|
|
|
|
| |||
A1P023: Other | Boosting sustainability for public schools | |||||||
A1P024: More comments: | ||||||||
A1P024: More comments: | Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation. | |||||||
A1P025: Estimated PED case study / PED LAB costs | ||||||||
A1P025: Estimated PED case study / PED LAB costs [mil. EUR] | 3.5 | |||||||
Contact person for general enquiries | ||||||||
A1P026: Name | Artemis Giavasoglou, Kleopatra Kalampoka | Adelina Rodrigues | Jingchun Shen | Dr. Jaume Salom, Dra. Cristina Corchero | Tudor Drâmbărean | David Škorňa | Dr. Annette Steingrube | Gerhard Hofer |
A1P027: Organization | Municipality of Kifissia – SPARCS local team | Maia Municipality (CM Maia) – Energy and Mobility division | Högskolan Dalarna | IREC | Municipality of Alba Iulia | Město Kladno | Fraunhofer Institute for solar energy systems | e7 energy innovation & engineering |
A1P028: Affiliation | Municipality / Public Bodies | Municipality / Public Bodies | Research Center / University | Research Center / University | Municipality / Public Bodies | Municipality / Public Bodies | Research Center / University | SME / Industry |
A1P028: Other | Maria Elena Seemann | |||||||
A1P029: Email | giavasoglou@kifissia.gr | dscm.adelina@cm-maia.pt | jih@du.se | Jsalom@irec.cat | tudor.drambarean@apulum.ro | david.skorna@mestokladno.cz | Annette.Steingrube@ise.fraunhofer.de | gerhard.hofer@e-sieben.at |
Contact person for other special topics | ||||||||
A1P030: Name | Stavros Zapantis - vice mayor | Carolina Gonçalves (AdEPorto) | Xingxing Zhang | Maria-Elena Seemann | Michal Kuzmič | |||
A1P031: Email | stavros.zapantis@gmail.com | carolinagoncalves@adeporto.eu | xza@du.se | maria.seemann@apulum.roapul | michal.kuzmic@cvut.cz | |||
Pursuant to the General Data Protection Regulation | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
A2P001: Fields of application | ||||||||
A2P001: Fields of application |
|
|
|
|
|
|
|
|
A2P001: Other | ||||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | ||||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | Energy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area: | Load calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREM | Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35) | Thermal rehabilitation of the main building, and investments in the energy efficiency and consumption fields. | Trnsys, PV modelling tools, CAD | Energy system modeling | ||
A2P003: Application of ISO52000 | ||||||||
A2P003: Application of ISO52000 | No | No | Yes | No | Yes | |||
A2P004: Appliances included in the calculation of the energy balance | ||||||||
A2P004: Appliances included in the calculation of the energy balance | Yes | Yes | Yes | Yes | Yes | Yes | ||
A2P005: Mobility included in the calculation of the energy balance | ||||||||
A2P005: Mobility included in the calculation of the energy balance | No | No | Yes | No | No | Yes | No | |
A2P006: Description of how mobility is included (or not included) in the calculation | ||||||||
A2P006: Description of how mobility is included (or not included) in the calculation | – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah | There will be 1 EV station placed nearby the main building. This would be the link to the mobility field. | Not yet included. | All energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutrality | ||||
A2P007: Annual energy demand in buildings / Thermal demand | ||||||||
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum] | 0.6777 | 0.982 | 1.4 | 135.715 | ||||
A2P008: Annual energy demand in buildings / Electric Demand | ||||||||
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum] | 0.03656 | 0.048441 | 0.3 | 31.76 | ||||
A2P009: Annual energy demand for e-mobility | ||||||||
A2P009: Annual energy demand for e-mobility [GWh/annum] | 0 | |||||||
A2P010: Annual energy demand for urban infrastructure | ||||||||
A2P010: Annual energy demand for urban infrastructure [GWh/annum] | 0 | |||||||
A2P011: Annual renewable electricity production on-site during target year | ||||||||
A2P011: PV | yes | yes | no | yes | yes | yes | no | no |
A2P011: PV - specify production in GWh/annum [GWh/annum] | 1.1 | |||||||
A2P011: Wind | no | no | no | no | no | no | no | no |
A2P011: Wind - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: Hydro | no | no | no | no | no | no | no | no |
A2P011: Hydro - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: Biomass_el | no | no | no | no | no | no | no | no |
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: Biomass_peat_el | no | no | no | no | no | no | no | no |
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: PVT_el | no | no | yes | no | no | no | no | no |
A2P011: PVT_el - specify production in GWh/annum [GWh/annum] | 0.01818 | |||||||
A2P011: Other | no | no | no | no | no | no | no | no |
A2P011: Other - specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Annual renewable thermal production on-site during target year | ||||||||
A2P012: Geothermal | no | no | no | no | no | no | no | no |
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Solar Thermal | no | yes | no | no | no | no | no | no |
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Biomass_heat | no | no | no | no | no | no | no | no |
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Waste heat+HP | no | no | no | no | no | yes | no | no |
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum] | 1.7 | |||||||
A2P012: Biomass_peat_heat | no | no | no | no | no | no | no | no |
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: PVT_th | no | no | yes | no | no | no | no | no |
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum] | 0.0825 | |||||||
A2P012: Biomass_firewood_th | no | no | no | no | no | no | no | no |
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Other | no | no | no | no | yes | no | no | no |
A2P012 - Other: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P013: Renewable resources on-site - Additional notes | ||||||||
A2P013: Renewable resources on-site - Additional notes | Only PVs - 940 PVs on the main building | Waste heat from cooling the ice rink. | 53 MW PV potential in all three quarters; no other internal renewable energy potentials known | |||||
A2P014: Annual energy use | ||||||||
A2P014: Annual energy use [GWh/annum] | 0.318 | 0.000048441 | 2.1 | 132.5 | ||||
A2P015: Annual energy delivered | ||||||||
A2P015: Annual energy delivered [GWh/annum] | 0.2055 | 0.000113331 | ||||||
A2P016: Annual non-renewable electricity production on-site during target year | ||||||||
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum] | 0 | 0 | ||||||
A2P017: Annual non-renewable thermal production on-site during target year | ||||||||
A2P017: Gas | no | no | no | yes | no | no | no | no |
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||||
A2P017: Coal | no | no | no | no | no | no | no | no |
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||||
A2P017: Oil | no | no | no | no | no | no | no | no |
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||||
A2P017: Other | no | no | yes | no | yes | no | no | no |
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum] | 0 | |||||||
A2P018: Annual renewable electricity imports from outside the boundary during target year | ||||||||
A2P018: PV | no | no | no | no | no | no | no | no |
A2P018 - PV: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: Wind | no | no | no | no | no | no | no | no |
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: Hydro | no | no | no | no | no | no | no | no |
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: Biomass_el | no | no | no | no | no | no | no | no |
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: Biomass_peat_el | no | no | no | no | no | no | no | no |
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: PVT_el | no | no | no | no | no | no | no | no |
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: Other | no | no | yes | no | yes | no | no | no |
A2P018 - Other: specify production in GWh/annum if available [GWh/annum] | 0.187 | |||||||
A2P019: Annual renewable thermal imports from outside the boundary during target year | ||||||||
A2P019: Geothermal | no | no | no | no | no | no | no | no |
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Solar Thermal | no | no | no | no | no | no | no | no |
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Biomass_heat | no | no | no | no | no | no | no | no |
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Waste heat+HP | no | no | no | no | no | no | no | no |
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Biomass_peat_heat | no | no | no | no | no | no | no | no |
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: PVT_th | no | no | no | no | no | no | no | no |
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Biomass_firewood_th | no | no | no | no | no | no | no | no |
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Other | no | no | yes | no | yes | no | no | no |
A2P019 Other: Please specify imports in GWh/annum [GWh/annum] | 0 | |||||||
A2P020: Share of RES on-site / RES outside the boundary | ||||||||
A2P020: Share of RES on-site / RES outside the boundary | 0 | 0 | 0.53839572192513 | 0 | 0 | 0 | 0 | 0 |
A2P021: GHG-balance calculated for the PED | ||||||||
A2P021: GHG-balance calculated for the PED [tCO2/annum] | 6.93 | -104 | ||||||
A2P022: KPIs related to the PED case study / PED Lab | ||||||||
A2P022: Safety & Security | none | yes | ||||||
A2P022: Health | thermal comfort diagram | yes | ||||||
A2P022: Education | none | yes | ||||||
A2P022: Mobility | none | yes | yes | |||||
A2P022: Energy | normalized CO2/GHG & Energy intensity | yes | Energy demand (heating and hot water), Energy demand (cooling), Cooling demand, Distributin losses, PV production, RES production, OER, Primafry Non-renewable energy balance, AMR, HMR, CO2 balance | yes | ||||
A2P022: Water | yes | |||||||
A2P022: Economic development | cost of excess emissions | yes | Investment cost, Caputal cost, Operation cost, payback period, NPV, cummulated cash flow, savings, Life cycle, ROI, SROI | |||||
A2P022: Housing and Community | yes | |||||||
A2P022: Waste | ||||||||
A2P022: Other | ||||||||
A2P023: Technological Solutions / Innovations - Energy Generation | ||||||||
A2P023: Photovoltaics | no | yes | yes | yes | yes | yes | yes | no |
A2P023: Solar thermal collectors | no | yes | yes | no | yes | no | yes | no |
A2P023: Wind Turbines | no | no | no | no | no | no | no | no |
A2P023: Geothermal energy system | no | no | yes | no | no | no | yes | no |
A2P023: Waste heat recovery | no | no | yes | no | no | yes | yes | no |
A2P023: Waste to energy | no | no | no | no | no | no | yes | no |
A2P023: Polygeneration | no | no | no | no | yes | no | no | no |
A2P023: Co-generation | no | no | no | no | yes | no | yes | no |
A2P023: Heat Pump | no | yes | yes | no | yes | yes | yes | no |
A2P023: Hydrogen | no | no | no | no | no | no | yes | no |
A2P023: Hydropower plant | no | no | no | no | no | no | yes | no |
A2P023: Biomass | no | no | no | no | no | no | yes | no |
A2P023: Biogas | no | no | no | no | no | no | yes | no |
A2P023: Other | ||||||||
A2P024: Technological Solutions / Innovations - Energy Flexibility | ||||||||
A2P024: A2P024: Information and Communication Technologies (ICT) | no | yes | yes | yes | yes | yes | yes | no |
A2P024: Energy management system | no | yes | no | yes | yes | yes | yes | no |
A2P024: Demand-side management | no | no | no | no | yes | yes | yes | no |
A2P024: Smart electricity grid | no | no | no | yes | yes | no | yes | no |
A2P024: Thermal Storage | no | no | yes | no | no | no | yes | no |
A2P024: Electric Storage | no | yes | no | yes | yes | no | yes | no |
A2P024: District Heating and Cooling | no | no | yes | no | no | yes | yes | no |
A2P024: Smart metering and demand-responsive control systems | no | yes | no | no | yes | yes | yes | no |
A2P024: P2P – buildings | no | no | no | no | yes | no | yes | no |
A2P024: Other | ||||||||
A2P025: Technological Solutions / Innovations - Energy Efficiency | ||||||||
A2P025: Deep Retrofitting | no | yes | yes | no | yes | yes | yes | no |
A2P025: Energy efficiency measures in historic buildings | no | no | no | no | no | no | yes | no |
A2P025: High-performance new buildings | no | no | no | no | no | no | no | no |
A2P025: Smart Public infrastructure (e.g. smart lighting) | no | yes | no | no | yes | no | no | no |
A2P025: Urban data platforms | no | no | no | no | yes | yes | yes | no |
A2P025: Mobile applications for citizens | no | no | no | no | no | no | no | no |
A2P025: Building services (HVAC & Lighting) | no | yes | yes | yes | yes | yes | no | no |
A2P025: Smart irrigation | no | no | no | no | no | no | no | no |
A2P025: Digital tracking for waste disposal | no | yes | no | no | no | no | no | no |
A2P025: Smart surveillance | no | no | no | no | no | no | no | no |
A2P025: Other | ||||||||
A2P026: Technological Solutions / Innovations - Mobility | ||||||||
A2P026: Efficiency of vehicles (public and/or private) | no | yes | no | yes | yes | no | yes | no |
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances) | no | no | no | no | yes | no | yes | no |
A2P026: e-Mobility | no | yes | no | no | yes | no | yes | no |
A2P026: Soft mobility infrastructures and last mile solutions | no | no | no | no | no | no | yes | no |
A2P026: Car-free area | no | no | no | no | no | no | no | no |
A2P026: Other | ||||||||
A2P027: Mobility strategies - Additional notes | ||||||||
A2P027: Mobility strategies - Additional notes | The new mobility plan integrates the PED area | |||||||
A2P028: Energy efficiency certificates | ||||||||
A2P028: Energy efficiency certificates | Yes | No | Yes | Yes | No | |||
A2P028: If yes, please specify and/or enter notes | Energy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwelling | The Municipal Buildings have an energy certificate, according to the Portuguese legislation. | National standards apply. | |||||
A2P029: Any other building / district certificates | ||||||||
A2P029: Any other building / district certificates | No | No | Yes | No | No | |||
A2P029: If yes, please specify and/or enter notes | ||||||||
A3P001: Relevant city /national strategy | ||||||||
A3P001: Relevant city /national strategy |
|
|
|
|
|
|
| |
A3P002: Quantitative targets included in the city / national strategy | ||||||||
A3P002: Quantitative targets included in the city / national strategy | The study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030. | 40% reduction in emissions by 2030 according to the Covenant of Mayors | Carbon neutrality 2050 | Climate neutrality by 2035 | ||||
A3P003: Strategies towards decarbonization of the gas grid | ||||||||
A3P003: Strategies towards decarbonization of the gas grid |
|
|
|
| ||||
A3P003: Other | At a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far. | |||||||
A3P004: Identification of needs and priorities | ||||||||
A3P004: Identification of needs and priorities | In our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements. | -Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation. | - Thermal rehabilitation - Heat pumps - Smart system capable o various connections and data export - Usage of the energy produced by PVs placed on 3 buildings within the PED | Freiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district level | ||||
A3P005: Sustainable behaviour | ||||||||
A3P005: Sustainable behaviour | While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve. | -Improving the development of Net Zero Energy Buildings and Flexible Energy buildings. | - Education - Replacement of the non-performant PVs - Professional maintenance of the PV system - Reduce of consumptions - Intelligent systems to recover heat - Intelligent system to permit the usage of domestic water from the heating system | Energy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economy | ||||
A3P006: Economic strategies | ||||||||
A3P006: Economic strategies |
|
|
|
|
|
| ||
A3P006: Other | ||||||||
A3P007: Social models | ||||||||
A3P007: Social models |
|
|
|
|
|
| ||
A3P007: Other | ||||||||
A3P008: Integrated urban strategies | ||||||||
A3P008: Integrated urban strategies |
|
|
|
|
| |||
A3P008: Other | ||||||||
A3P009: Environmental strategies | ||||||||
A3P009: Environmental strategies |
|
|
|
|
| |||
A3P009: Other | ||||||||
A3P010: Legal / Regulatory aspects | ||||||||
A3P010: Legal / Regulatory aspects | - European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013. | |||||||
B1P001: PED/PED relevant concept definition | ||||||||
B1P001: PED/PED relevant concept definition | The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively. | Positive energy district | Onsite Energy Ratio > 1 | Assessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case study | ||||
B1P002: Motivation behind PED/PED relevant project development | ||||||||
B1P002: Motivation behind PED/PED relevant project development | Borlänge city has committed to become the carbon-neutral city by 2030. | Creation of an area which aims to be sustainable in terms of energy sufficiency and efficiency. | Strategic, economic | City is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regard | ||||
B1P003: Environment of the case study area | ||||||||
B2P003: Environment of the case study area | Urban area | Urban area | Urban area | Suburban area | Urban area | |||
B1P004: Type of district | ||||||||
B2P004: Type of district |
|
|
|
|
| |||
B1P005: Case Study Context | ||||||||
B1P005: Case Study Context |
|
|
|
|
| |||
B1P006: Year of construction | ||||||||
B1P006: Year of construction | 1990 | 1976 | ||||||
B1P007: District population before intervention - Residential | ||||||||
B1P007: District population before intervention - Residential | 100 | 5898 | ||||||
B1P008: District population after intervention - Residential | ||||||||
B1P008: District population after intervention - Residential | 100 | 5898 | ||||||
B1P009: District population before intervention - Non-residential | ||||||||
B1P009: District population before intervention - Non-residential | 6 | |||||||
B1P010: District population after intervention - Non-residential | ||||||||
B1P010: District population after intervention - Non-residential | 6 | |||||||
B1P011: Population density before intervention | ||||||||
B1P011: Population density before intervention | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
B1P012: Population density after intervention | ||||||||
B1P012: Population density after intervention | 0 | 0 | 0.010658622423328 | 0 | 0 | 0 | 0.0011987804878049 | 0 |
B1P013: Building and Land Use before intervention | ||||||||
B1P013: Residential | no | no | yes | no | no | yes | yes | no |
B1P013 - Residential: Specify the sqm [m²] | 4360 | |||||||
B1P013: Office | no | no | no | no | no | yes | yes | yes |
B1P013 - Office: Specify the sqm [m²] | ||||||||
B1P013: Industry and Utility | no | no | no | no | no | no | yes | no |
B1P013 - Industry and Utility: Specify the sqm [m²] | ||||||||
B1P013: Commercial | no | no | no | no | no | no | yes | yes |
B1P013 - Commercial: Specify the sqm [m²] | ||||||||
B1P013: Institutional | no | no | no | no | yes | no | yes | no |
B1P013 - Institutional: Specify the sqm [m²] | ||||||||
B1P013: Natural areas | no | no | no | no | no | no | yes | no |
B1P013 - Natural areas: Specify the sqm [m²] | ||||||||
B1P013: Recreational | no | no | no | no | no | yes | yes | no |
B1P013 - Recreational: Specify the sqm [m²] | ||||||||
B1P013: Dismissed areas | no | no | no | no | no | no | no | no |
B1P013 - Dismissed areas: Specify the sqm [m²] | ||||||||
B1P013: Other | no | no | yes | no | no | no | no | no |
B1P013 - Other: Specify the sqm [m²] | 706 | |||||||
B1P014: Building and Land Use after intervention | ||||||||
B1P014: Residential | no | no | yes | no | no | yes | yes | yes |
B1P014 - Residential: Specify the sqm [m²] | 4360 | |||||||
B1P014: Office | no | no | no | no | no | yes | yes | yes |
B1P014 - Office: Specify the sqm [m²] | ||||||||
B1P014: Industry and Utility | no | no | no | no | no | no | yes | no |
B1P014 - Industry and Utility: Specify the sqm [m²] | ||||||||
B1P014: Commercial | no | no | no | no | no | no | yes | yes |
B1P014 - Commercial: Specify the sqm [m²] | ||||||||
B1P014: Institutional | no | no | no | no | yes | no | yes | no |
B1P014 - Institutional: Specify the sqm [m²] | ||||||||
B1P014: Natural areas | no | no | no | no | no | no | yes | no |
B1P014 - Natural areas: Specify the sqm [m²] | ||||||||
B1P014: Recreational | no | no | no | no | no | yes | yes | no |
B1P014 - Recreational: Specify the sqm [m²] | ||||||||
B1P014: Dismissed areas | no | no | no | no | no | no | no | no |
B1P014 - Dismissed areas: Specify the sqm [m²] | ||||||||
B1P014: Other | no | no | yes | no | no | no | no | no |
B1P014 - Other: Specify the sqm [m²] | 706 | |||||||
B2P001: PED Lab concept definition | ||||||||
B2P001: PED Lab concept definition | addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation | |||||||
B2P002: Installation life time | ||||||||
B2P002: Installation life time | Permanent installation | |||||||
B2P003: Scale of action | ||||||||
B2P003: Scale | Virtual | Virtual | ||||||
B2P004: Operator of the installation | ||||||||
B2P004: Operator of the installation | CM Maia, IPMAIA, NEW, AdEP. | IREC | ||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | ||||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | ||||||||
B2P006: Circular Economy Approach | ||||||||
B2P006: Do you apply any strategy to reuse and recycling the materials? | No | No | ||||||
B2P006: Other | ||||||||
B2P007: Motivation for developing the PED Lab | ||||||||
B2P007: Motivation for developing the PED Lab |
|
| ||||||
B2P007: Other | ||||||||
B2P008: Lead partner that manages the PED Lab | ||||||||
B2P008: Lead partner that manages the PED Lab | Municipality | Research center/University | ||||||
B2P008: Other | ||||||||
B2P009: Collaborative partners that participate in the PED Lab | ||||||||
B2P009: Collaborative partners that participate in the PED Lab |
| |||||||
B2P009: Other | Energy Agency | |||||||
B2P010: Synergies between the fields of activities | ||||||||
B2P010: Synergies between the fields of activities | ||||||||
B2P011: Available facilities to test urban configurations in PED Lab | ||||||||
B2P011: Available facilities to test urban configurations in PED Lab |
|
| ||||||
B2P011: Other | ||||||||
B2P012: Incubation capacities of PED Lab | ||||||||
B2P012: Incubation capacities of PED Lab |
|
| ||||||
B2P013: Availability of the facilities for external people | ||||||||
B2P013: Availability of the facilities for external people | Depends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents. | |||||||
B2P014: Monitoring measures | ||||||||
B2P014: Monitoring measures |
|
| ||||||
B2P015: Key Performance indicators | ||||||||
B2P015: Key Performance indicators |
|
| ||||||
B2P016: Execution of operations | ||||||||
B2P016: Execution of operations | Current PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted. | |||||||
B2P017: Capacities | ||||||||
B2P017: Capacities | _Energy production and storage, _Monitoring; _Digitization. | - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. | ||||||
B2P018: Relations with stakeholders | ||||||||
B2P018: Relations with stakeholders | The relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners. | |||||||
B2P019: Available tools | ||||||||
B2P019: Available tools |
|
| ||||||
B2P019: Available tools | ||||||||
B2P020: External accessibility | ||||||||
B2P020: External accessibility | ||||||||
C1P001: Unlocking Factors | ||||||||
C1P001: Recent technological improvements for on-site RES production | 5 - Very important | 4 - Important | 4 - Important | 1 - Unimportant | 4 - Important | 4 - Important | 3 - Moderately important | 1 - Unimportant |
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock | 5 - Very important | 4 - Important | 5 - Very important | 1 - Unimportant | 4 - Important | 4 - Important | 3 - Moderately important | 1 - Unimportant |
C1P001: Energy Communities, P2P, Prosumers concepts | 5 - Very important | 4 - Important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant |
C1P001: Storage systems and E-mobility market penetration | 4 - Important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 1 - Unimportant | |
C1P001: Decreasing costs of innovative materials | 4 - Important | 3 - Moderately important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant |
C1P001: Financial mechanisms to reduce costs and maximize benefits | 4 - Important | 4 - Important | 5 - Very important | 5 - Very important | 3 - Moderately important | 4 - Important | 2 - Slightly important | 1 - Unimportant |
C1P001: The ability to predict Multiple Benefits | 4 - Important | 4 - Important | 4 - Important | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | |
C1P001: The ability to predict the distribution of benefits and impacts | 4 - Important | 4 - Important | 4 - Important | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | |
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up) | 5 - Very important | 4 - Important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 4 - Important | 1 - Unimportant |
C1P001: Social acceptance (top-down) | 5 - Very important | 4 - Important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important | 4 - Important | 1 - Unimportant |
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.) | 3 - Moderately important | 4 - Important | 4 - Important | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | 4 - Important | 1 - Unimportant |
C1P001: Presence of integrated urban strategies and plans | 3 - Moderately important | 5 - Very important | 5 - Very important | 1 - Unimportant | 5 - Very important | 4 - Important | 4 - Important | 1 - Unimportant |
C1P001: Multidisciplinary approaches available for systemic integration | 3 - Moderately important | 4 - Important | 5 - Very important | 4 - Important | 2 - Slightly important | 3 - Moderately important | 4 - Important | 1 - Unimportant |
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects | 4 - Important | 4 - Important | 4 - Important | 5 - Very important | 5 - Very important | 5 - Very important | 3 - Moderately important | 1 - Unimportant |
C1P001: Availability of RES on site (Local RES) | 4 - Important | 5 - Very important | 4 - Important | 4 - Important | 4 - Important | 4 - Important | 1 - Unimportant | |
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders | 4 - Important | 4 - Important | 2 - Slightly important | 5 - Very important | 5 - Very important | 4 - Important | 2 - Slightly important | 1 - Unimportant |
C1P001: Any other UNLOCKING FACTORS | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | |
C1P001: Any other UNLOCKING FACTORS (if any) | Collaboration with the local partners | |||||||
C1P002: Driving Factors | ||||||||
C1P002: Climate Change adaptation need | 4 - Important | 5 - Very important | 5 - Very important | 4 - Important | 5 - Very important | 3 - Moderately important | 4 - Important | 1 - Unimportant |
C1P002: Climate Change mitigation need (local RES production and efficiency) | 5 - Very important | 4 - Important | 5 - Very important | 4 - Important | 5 - Very important | 4 - Important | 4 - Important | 1 - Unimportant |
C1P002: Rapid urbanization trend and need of urban expansions | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P002: Urban re-development of existing built environment | 3 - Moderately important | 4 - Important | 4 - Important | 4 - Important | 2 - Slightly important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant |
C1P002: Economic growth need | 2 - Slightly important | 4 - Important | 4 - Important | 4 - Important | 2 - Slightly important | 4 - Important | 1 - Unimportant | 1 - Unimportant |
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.) | 3 - Moderately important | 4 - Important | 1 - Unimportant | 4 - Important | 2 - Slightly important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant |
C1P002: Territorial and market attractiveness | 2 - Slightly important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P002: Energy autonomy/independence | 5 - Very important | 4 - Important | 2 - Slightly important | 5 - Very important | 5 - Very important | 4 - Important | 3 - Moderately important | 1 - Unimportant |
C1P002: Any other DRIVING FACTOR | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | |
C1P002: Any other DRIVING FACTOR (if any) | ||||||||
C1P003: Administrative barriers | ||||||||
C1P003: Difficulty in the coordination of high number of partners and authorities | 4 - Important | 5 - Very important | 4 - Important | 4 - Important | 3 - Moderately important | 4 - Important | 4 - Important | 1 - Unimportant |
C1P003: Lack of good cooperation and acceptance among partners | 3 - Moderately important | 4 - Important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 1 - Unimportant |
C1P003: Lack of public participation | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | 4 - Important | 4 - Important | 1 - Unimportant |
C1P003: Lack of institutions/mechanisms to disseminate information | 3 - Moderately important | 3 - Moderately important | 4 - Important | 3 - Moderately important | 4 - Important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant |
C1P003:Long and complex procedures for authorization of project activities | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important | 4 - Important | 3 - Moderately important | 1 - Unimportant |
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy | 4 - Important | 4 - Important | 4 - Important | 5 - Very important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P003: Complicated and non-comprehensive public procurement | 4 - Important | 4 - Important | 5 - Very important | 3 - Moderately important | 4 - Important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant |
C1P003: Fragmented and or complex ownership structure | 3 - Moderately important | 5 - Very important | 4 - Important | 5 - Very important | 1 - Unimportant | 5 - Very important | 4 - Important | 1 - Unimportant |
C1P003: City administration & cross-sectoral attitude/approaches (silos) | 3 - Moderately important | 5 - Very important | 5 - Very important | 4 - Important | 2 - Slightly important | 5 - Very important | 2 - Slightly important | 1 - Unimportant |
C1P003: Lack of internal capacities to support energy transition | 3 - Moderately important | 4 - Important | 5 - Very important | 4 - Important | 3 - Moderately important | 4 - Important | 3 - Moderately important | 1 - Unimportant |
C1P003: Any other Administrative BARRIER | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | |
C1P003: Any other Administrative BARRIER (if any) | Fragmented financial support; lack of experimental budget for complex projects, etc. | |||||||
C1P004: Policy barriers | ||||||||
C1P004: Lack of long-term and consistent energy plans and policies | 4 - Important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant |
C1P004: Lacking or fragmented local political commitment and support on the long term | 4 - Important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 4 - Important | 5 - Very important | 3 - Moderately important | 1 - Unimportant |
C1P004: Lack of Cooperation & support between national-regional-local entities | 3 - Moderately important | 3 - Moderately important | 4 - Important | 2 - Slightly important | 3 - Moderately important | 4 - Important | 2 - Slightly important | 1 - Unimportant |
C1P004: Any other Political BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | |
C1P004: Any other Political BARRIER (if any) | Different priorities; overall problematic system od decentralization powers; non-fuctioning model of local development funding, etc. | |||||||
C1P005: Legal and Regulatory barriers | ||||||||
C1P005: Inadequate regulations for new technologies | 4 - Important | 4 - Important | 4 - Important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 4 - Important | 1 - Unimportant |
C1P005: Regulatory instability | 3 - Moderately important | 4 - Important | 2 - Slightly important | 2 - Slightly important | 4 - Important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant |
C1P005: Non-effective regulations | 4 - Important | 4 - Important | 2 - Slightly important | 2 - Slightly important | 2 - Slightly important | 4 - Important | 1 - Unimportant | 1 - Unimportant |
C1P005: Unfavorable local regulations for innovative technologies | 3 - Moderately important | 4 - Important | 4 - Important | 4 - Important | 1 - Unimportant | 4 - Important | 5 - Very important | 1 - Unimportant |
C1P005: Building code and land-use planning hindering innovative technologies | 4 - Important | 4 - Important | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 1 - Unimportant |
C1P005: Insufficient or insecure financial incentives | 4 - Important | 4 - Important | 3 - Moderately important | 5 - Very important | 4 - Important | 5 - Very important | 3 - Moderately important | 1 - Unimportant |
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation | 4 - Important | 4 - Important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant |
C1P005: Shortage of proven and tested solutions and examples | 3 - Moderately important | 4 - Important | 4 - Important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | |
C1P005: Any other Legal and Regulatory BARRIER | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P005: Any other Legal and Regulatory BARRIER (if any) | ||||||||
C1P006: Environmental barriers | ||||||||
C1P006: Environmental barriers | 2 - Slightly important | |||||||
C1P007: Technical barriers | ||||||||
C1P007: Lack of skilled and trained personnel | 4 - Important | 4 - Important | 4 - Important | 5 - Very important | 4 - Important | 4 - Important | 4 - Important | 1 - Unimportant |
C1P007: Deficient planning | 3 - Moderately important | 3 - Moderately important | 4 - Important | 5 - Very important | 3 - Moderately important | 4 - Important | 4 - Important | 1 - Unimportant |
C1P007: Retrofitting work in dwellings in occupied state | 4 - Important | 4 - Important | 4 - Important | 1 - Unimportant | 3 - Moderately important | 4 - Important | 4 - Important | 1 - Unimportant |
C1P007: Lack of well-defined process | 4 - Important | 4 - Important | 2 - Slightly important | 4 - Important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 1 - Unimportant |
C1P007: Inaccuracy in energy modelling and simulation | 4 - Important | 4 - Important | 2 - Slightly important | 5 - Very important | 2 - Slightly important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant |
C1P007: Lack/cost of computational scalability | 4 - Important | 4 - Important | 3 - Moderately important | 4 - Important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant |
C1P007: Grid congestion, grid instability | 4 - Important | 4 - Important | 5 - Very important | 5 - Very important | 2 - Slightly important | 4 - Important | 3 - Moderately important | 1 - Unimportant |
C1P007: Negative effects of project intervention on the natural environment | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P007: Energy retrofitting work in dense and/or historical urban environment | 5 - Very important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 3 - Moderately important | 4 - Important | 1 - Unimportant |
C1P007: Difficult definition of system boundaries | 3 - Moderately important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 4 - Important | 1 - Unimportant |
C1P007: Any other Thecnical BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | |
C1P007: Any other Thecnical BARRIER (if any) | Inadequate regulation towards energy transition | |||||||
C1P008: Social and Cultural barriers | ||||||||
C1P008: Inertia | 4 - Important | 3 - Moderately important | 2 - Slightly important | 4 - Important | 4 - Important | 3 - Moderately important | 4 - Important | 1 - Unimportant |
C1P008: Lack of values and interest in energy optimization measurements | 5 - Very important | 3 - Moderately important | 5 - Very important | 5 - Very important | 4 - Important | 4 - Important | 3 - Moderately important | 1 - Unimportant |
C1P008: Low acceptance of new projects and technologies | 5 - Very important | 3 - Moderately important | 5 - Very important | 5 - Very important | 3 - Moderately important | 5 - Very important | 2 - Slightly important | 1 - Unimportant |
C1P008: Difficulty of finding and engaging relevant actors | 5 - Very important | 3 - Moderately important | 4 - Important | 5 - Very important | 3 - Moderately important | 4 - Important | 4 - Important | 1 - Unimportant |
C1P008: Lack of trust beyond social network | 4 - Important | 4 - Important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant |
C1P008: Rebound effect | 4 - Important | 4 - Important | 4 - Important | 4 - Important | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant |
C1P008: Hostile or passive attitude towards environmentalism | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P008: Exclusion of socially disadvantaged groups | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P008: Non-energy issues are more important and urgent for actors | 3 - Moderately important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 4 - Important | 1 - Unimportant |
C1P008: Hostile or passive attitude towards energy collaboration | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | |
C1P008: Any other Social BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P008: Any other Social BARRIER (if any) | ||||||||
C1P009: Information and Awareness barriers | ||||||||
C1P009: Insufficient information on the part of potential users and consumers | 4 - Important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 4 - Important | 1 - Unimportant | |
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts | 4 - Important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 4 - Important | 2 - Slightly important | 1 - Unimportant | |
C1P009: Lack of awareness among authorities | 4 - Important | 5 - Very important | 2 - Slightly important | 3 - Moderately important | 4 - Important | 2 - Slightly important | 1 - Unimportant | |
C1P009: Information asymmetry causing power asymmetry of established actors | 4 - Important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | |
C1P009: High costs of design, material, construction, and installation | 4 - Important | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important | 4 - Important | 1 - Unimportant | |
C1P009: Any other Information and Awareness BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P009: Any other Information and Awareness BARRIER (if any) | ||||||||
C1P010: Financial barriers | ||||||||
C1P010: Hidden costs | 4 - Important | 5 - Very important | 5 - Very important | 4 - Important | 4 - Important | 2 - Slightly important | 1 - Unimportant | |
C1P010: Insufficient external financial support and funding for project activities | 4 - Important | 5 - Very important | 5 - Very important | 5 - Very important | 4 - Important | 3 - Moderately important | 1 - Unimportant | |
C1P010: Economic crisis | 4 - Important | 5 - Very important | 4 - Important | 4 - Important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | |
C1P010: Risk and uncertainty | 4 - Important | 5 - Very important | 5 - Very important | 2 - Slightly important | 4 - Important | 4 - Important | 1 - Unimportant | |
C1P010: Lack of consolidated and tested business models | 4 - Important | 5 - Very important | 5 - Very important | 4 - Important | 4 - Important | 3 - Moderately important | 1 - Unimportant | |
C1P010: Limited access to capital and cost disincentives | 4 - Important | 5 - Very important | 4 - Important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | ||
C1P010: Any other Financial BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P010: Any other Financial BARRIER (if any) | ||||||||
C1P011: Market barriers | ||||||||
C1P011: Split incentives | 5 - Very important | 4 - Important | 4 - Important | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 1 - Unimportant | |
C1P011: Energy price distortion | 4 - Important | 4 - Important | 5 - Very important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | |
C1P011: Energy market concentration, gatekeeper actors (DSOs) | 4 - Important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | |
C1P011: Any other Market BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P011: Any other Market BARRIER (if any) | ||||||||
C1P012: Stakeholders involved | ||||||||
C1P012: Government/Public Authorities |
|
|
|
| ||||
C1P012: Research & Innovation |
|
|
| |||||
C1P012: Financial/Funding |
|
| ||||||
C1P012: Analyst, ICT and Big Data |
|
| ||||||
C1P012: Business process management |
|
| ||||||
C1P012: Urban Services providers |
|
|
| |||||
C1P012: Real Estate developers |
|
|
| |||||
C1P012: Design/Construction companies |
|
| ||||||
C1P012: End‐users/Occupants/Energy Citizens |
|
|
| |||||
C1P012: Social/Civil Society/NGOs |
|
| ||||||
C1P012: Industry/SME/eCommerce |
|
| ||||||
C1P012: Other | ||||||||
C1P012: Other (if any) | ||||||||
Summary |
Authors (framework concept)
Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)
Contributors (to the content)
Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)
Implemented by
Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)