Filters:
NameProjectTypeCompare
Riga, Ķīpsala, RTU smart student city ExPEDite: Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka (TOKI Apartments Case Study: located in Zübeyde Hanım Neighbourhood) PED-ACT: Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Uncompare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Uncompare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Uncompare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Maia, Sobreiro Social Housing
Leipzig, Baumwollspinnerei district
Évora, Portugal
Vienna, Am Kempelenpark
Oulu, Kaukovainio
Barcelona, SEILAB & Energy SmartLab
Salzburg, Gneis district
Graz, Reininghausgründe
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityMaia, Sobreiro Social HousingLeipzig, Baumwollspinnerei districtÉvora, PortugalVienna, Am KempelenparkOulu, KaukovainioBarcelona, SEILAB & Energy SmartLabSalzburg, Gneis districtGraz, Reininghausgründe
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesnoyesyesnoyesyes
PED relevant case studyyesnonoyesnonononono
PED Lab.noyesnoyesnonoyesnono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesnoyesyesnoyesyes
Annual energy surplusnononoyesyesnonoyesno
Energy communityyesnonoyesnonoyesyesno
Circularitynononononoyesnonono
Air quality and urban comfortyesnoyesnonononoyesno
Electrificationyesnoyesnonoyesyesnono
Net-zero energy costnonononononononono
Net-zero emissionnonononononoyesnono
Self-sufficiency (energy autonomous)nonononononoyesnono
Maximise self-sufficiencynoyesnonononononono
Othernonoyesnononoyesnono
Other (A1P004)Net-zero emission; Annual energy surplusGreen IT
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseImplementation PhaseImplementation PhasePlanning PhaseIn operationIn operationCompletedImplementation Phase
A1P006: Start Date
A1P006: Start date10/2110/1907/1601/201101/202019
A1P007: End Date
A1P007: End date10/2409/2402/2502/201301/242025
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards
  • General statistical datasets
  • Monitoring data available within the districts
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
        • E. Rainer, H. Schnitzer, T. Mach, T. Wieland, M. Reiter, L. Fickert, E. Schmautzer, A. Passer, H. Oblak, H. Kreiner, R. Lazar, M. Duschek, et al. (2015): Rahmenplan Energy City Graz-Reininghaus – Subprojekt 2 des Leitprojektes „ECR Energy City Graz – Reininghaus Online: Rahmenplan Energy City Graz-Reininghaus - Haus der Zukunft (nachhaltigwirtschaften.at),
        • H.Schnitzer et al. (2016): Arbeiten und Wohnen in der Smart City Reininghaus, Online: Arbeiten und Wohnen in Graz Reininghaus - Smartcities
        A1P011: Geographic coordinates
        X Coordinate (longitude):23.814588-8.37355712.318458-7.90937716.39529225.5175950840935072.113.04121615.407440
        Y Coordinate (latitude):38.07734941.13580451.32649238.57080448.17359864.9928809817313241.347.77101947.0607
        A1P012: Country
        A1P012: CountryGreecePortugalGermanyPortugalAustriaFinlandSpainAustriaAustria
        A1P013: City
        A1P013: CityMunicipality of KifissiaMaiaLeipzigÉvoraViennaOuluBarcelona and TarragonaSalzburgGraz
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CsaCsbDfbCsaCwbDfcCsaDfbDfb
        A1P015: District boundary
        A1P015: District boundaryVirtualVirtualFunctionalGeographicGeographicVirtualGeographicGeographic
        OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodGeographicRegional (close to virtual)
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:PublicMixedPrivateMixedPublicMixedMixed
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerSingle OwnerSingle OwnerSingle OwnerMultiple Owners
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED22266017100
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]1700019700199762
        A1P020: Total ground area
        A1P020: Total ground area [m²]30000600001000000
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area001000000
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenononononoyesnonoyes
        A1P022a: Add the value in EUR if available [EUR]
        A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernoyesnonononononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnonononononononono
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingnoyesnonononononoyes
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingnoyesnonononononono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnononononoyesnonoyes
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernonononononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnoyesnoyesnoyesnoyesno
        A1P022i: Add the value in EUR if available [EUR]19998275
        A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononononono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: Other
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Positive externalities,
        • Boosting local and sustainable production
        • Positive externalities,
        • Boosting local and sustainable production
        • Job creation,
        • Boosting local and sustainable production
        • Positive externalities,
        • Other
        • Job creation,
        • Boosting local businesses,
        • Boosting consumption of local and sustainable products
        A1P023: OtherSustainable and replicable business models regarding renewable energy systemsDeveloping and demonstrating new solutionsBoosting social cooperation and social aid
        A1P024: More comments:
        A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.The “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]5
        Contact person for general enquiries
        A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaAdelina RodriguesSimon BaumJoão Bravo DiasGerhard HoferSamuli RinneDr. Jaume Salom, Dra. Cristina CorcheroAbel MagyariKatharina Schwarz
        A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamMaia Municipality (CM Maia) – Energy and Mobility divisionCENERO Energy GmbHEDP Labelece7 energy innovation & engineeringCity of OuluIRECABUDStadtLABOR, Innovationen für urbane Lebensqualität GmbH
        A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesOtherSME / IndustrySME / IndustryMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversitySME / Industry
        A1P028: OtherCENERO Energy GmbH
        A1P029: Emailgiavasoglou@kifissia.grdscm.adelina@cm-maia.ptsib@cenero.dejoao.bravodias@edp.ptgerhard.hofer@e-sieben.atsamuli.rinne@ouka.fiJsalom@irec.catmagyari.abel@abud.hukatharina.schwarz@stadtlaborgraz.at
        Contact person for other special topics
        A1P030: NameStavros Zapantis - vice mayorCarolina Gonçalves (AdEPorto)Simon BaumSamuli RinneStrassl IngeborgHans Schnitzer
        A1P031: Emailstavros.zapantis@gmail.comcarolinagoncalves@adeporto.eusib@cenero.desamuli.rinne@ouka.fiinge.strassl@salzburg.gv.athans.schnitzer@stadtlaborgraz.at
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Waste management,
        • Construction materials
        • Energy efficiency,
        • Energy production,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Waste management
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Water use,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        • Energy efficiency,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Water use,
        • Indoor air quality,
        • Other
        A2P001: OtherUrban Management; Air Quality
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:Different kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)- Dynamic district, and building scale energy modelling - Microclimate modelling - Klimaaktiv certification system - Energy community - Flexibility with shared heating and electricity systemsEnergy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the district
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoNoNoYesNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceYesYesNoYesNoYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoYesNoNoYesNoYes
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationNot included. However, there is a charging place for a shared EV in one building.– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah- Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets)
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]1.652.1
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.2
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]0
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesyesyesnonoyesyesyesyes
        A2P011: PV - specify production in GWh/annum [GWh/annum]0.10.7770664
        A2P011: Windnonononononononono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydrononononononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnonononononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnonononononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnonononononononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernonononononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnononononononoyesyes
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnoyesnonononononoyes
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatnonononononononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPnononononoyesnonoyes
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.2
        A2P012: Biomass_peat_heatnonononononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnonononononononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnonononononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernonononononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notesHeat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)Groundwater (used for heat pumps)
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]2.4212.30.819016
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00-1
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnonononononoyesnono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnonononononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnonononononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernonononononononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnononononoyesnonoyes
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
        A2P018: Windnononononoyesnonoyes
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydronononononoyesnonoyes
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnononononoyesnonono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnononononoyesnonono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnonononononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernonononononononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnonononononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnonononononononoyes
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnononononoyesnonoyes
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
        A2P019: Waste heat+HPnonononononononoyes
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnonononononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnonononononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnonononononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernonononononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary000003.2857142857143000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]00.036
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Security
        A2P022: HealthEncouraging a healthy lifestyleCO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levels
        A2P022: Education
        A2P022: MobilityModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV chargingx
        A2P022: EnergyapplyFinal energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reductionNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissionsx
        A2P022: Waterx
        A2P022: Economic developmentTotal investments, Payback time, Economic value of savingsInvestment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost Comparisonx
        A2P022: Housing and CommunityDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy povertyAccess to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousnessx
        A2P022: WasteRecycling rate
        A2P022: OtherSmart Cities strategies, Quality of open data
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsnoyesnoyesnoyesyesyesyes
        A2P023: Solar thermal collectorsnoyesnoyesnonononono
        A2P023: Wind Turbinesnonononononononono
        A2P023: Geothermal energy systemnononononononoyesno
        A2P023: Waste heat recoverynononononoyesnonoyes
        A2P023: Waste to energynonononononononono
        A2P023: Polygenerationnonononononononono
        A2P023: Co-generationnononononoyesnonono
        A2P023: Heat Pumpnoyesnononoyesnonoyes
        A2P023: Hydrogennonononononononono
        A2P023: Hydropower plantnonononononononono
        A2P023: Biomassnononononoyesnonono
        A2P023: Biogasnonononononononono
        A2P023: Other
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)noyesnoyesnoyesyesnoyes
        A2P024: Energy management systemnoyesnoyesnoyesyesyesno
        A2P024: Demand-side managementnononononononoyesno
        A2P024: Smart electricity gridnononoyesnonoyesyesno
        A2P024: Thermal Storagenononoyesnoyesnonoyes
        A2P024: Electric Storagenoyesnoyesnonoyesnono
        A2P024: District Heating and Coolingnononononoyesnonoyes
        A2P024: Smart metering and demand-responsive control systemsnoyesnoyesnonononono
        A2P024: P2P – buildingsnononoyesnononoyesno
        A2P024: Other
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnoyesnononoyesnonono
        A2P025: Energy efficiency measures in historic buildingsnononoyesnonononono
        A2P025: High-performance new buildingsnononononoyesnoyesyes
        A2P025: Smart Public infrastructure (e.g. smart lighting)noyesnonononononoyes
        A2P025: Urban data platformsnononoyesnoyesnonono
        A2P025: Mobile applications for citizensnononoyesnonononoyes
        A2P025: Building services (HVAC & Lighting)noyesnoyesnoyesyesyesno
        A2P025: Smart irrigationnonononononononoyes
        A2P025: Digital tracking for waste disposalnoyesnoyesnonononono
        A2P025: Smart surveillancenononoyesnonononono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)noyesnononoyesyesnoyes
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononononoyesnoyesyes
        A2P026: e-Mobilitynoyesnoyesnoyesnoyesyes
        A2P026: Soft mobility infrastructures and last mile solutionsnononoyesnoyesnonoyes
        A2P026: Car-free areanonononononononoyes
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notesTest-Concept for bidirectional charging.Shared mobility: a mobility point will be implemented and ensure the flexible use of different mobility services.- Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District management
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesNoYesYesYes
        A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingThe Municipal Buildings have an energy certificate, according to the Portuguese legislation.The obligatory buildijng energy classificationEnergy Performance CertificateEnergieausweis mandatory if buildings/ flats/ apartments are sold
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNoNoYesYes
        A2P029: If yes, please specify and/or enter notesKlimaaktiv certificate, Greenpass certificateKlimaaktiv standard  Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/gold
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC)
        • Urban Renewal Strategies,
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies,
        • Urban Renewal Strategies,
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies,
        • New development strategies
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyCarbon neutrality by 2035City level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supply
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Other
        • Biogas
        • Electrification of Heating System based on Heat Pumps
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods,
        • Biogas
        A3P003: OtherAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesDeveloping and demonstrating solutions for carbon neutrality-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.Reininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared offices
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviourE. g. visualizing energy and water consumption-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.- citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Innovative business models,
        • PPP models,
        • Existing incentives
        • Innovative business models,
        • Other
        • Open data business models,
        • Innovative business models,
        • PPP models,
        • Life Cycle Cost,
        • Circular economy models
        • Demand management Living Lab
        • Innovative business models,
        • Local trading
        • PPP models,
        • Local trading
        A3P006: Otheroperational savings through efficiency measures
        A3P007: Social models
        A3P007: Social models
        • Co-creation / Citizen engagement strategies,
        • Prevention of energy poverty,
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Behavioural Change / End-users engagement
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen Social Research,
        • Policy Forums,
        • Quality of Life,
        • Strategies towards social mix,
        • Affordability,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Digital Inclusion,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Quality of Life,
        • Strategies towards social mix,
        • Affordability,
        • Citizen/owner involvement in planning and maintenance
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Quality of Life,
        • Affordability,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • City Vision 2050,
        • SECAP Updates,
        • Building / district Certification
        • Strategic urban planning,
        • District Energy plans,
        • City Vision 2050,
        • SECAP Updates
        • Building / district Certification
        • Strategic urban planning,
        • City Vision 2050,
        • Building / district Certification
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral,
        • Net zero carbon footprint,
        • Pollutants Reduction
        • Other
        • Energy Neutral,
        • Net zero carbon footprint
        • Energy Neutral,
        • Low Emission Zone,
        • Pollutants Reduction,
        • Greening strategies
        • Energy Neutral,
        • Low Emission Zone
        • Pollutants Reduction,
        • Greening strategies,
        • Sustainable Urban drainage systems (SUDS),
        • Nature Based Solutions (NBS)
        A3P009: OtherPositive Energy Balance for the demo site
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.Mobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city.
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionThe PED main objective is to achieve the energy transition while preserving cultural heritage and improving citizen’s quality of life.The original idea is that the area produces at least as much it consumes.Reininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentPOCITYF brings together eight cities (Lightouse and Fellow cities), all having cultural heritage areas in their territory. All are intrinsically motivated to participate in the necessary energy transition not only for their conventional city districts of mixed-used, but also for districts with individually specificities as those belonging in their cultural heritage, which at the moment may be acting as barriers for their further environmental sustainability, but after POCITYF will be acting as a promising building retrofits roadmap for similar and other EU cities.Developing systems towards carbon neutrality. Also urban renewal.The Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaUrban areaUrban areaSuburban areaSuburban areaUrban area
        B1P004: Type of district
        B2P004: Type of district
        • Renovation
        • Renovation
        • New construction,
        • Renovation
        • New construction
        • New construction
        B1P005: Case Study Context
        B1P005: Case Study Context
        • Preservation Area
        • Preservation Area
        • Re-use / Transformation Area,
        • New Development
        • New Development,
        • Retrofitting Area
        • New Development
        • New Development
        B1P006: Year of construction
        B1P006: Year of construction20242025
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential35000
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential350010000
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential0
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P011: Population density before intervention
        B1P011: Population density before intervention000000000
        B1P012: Population density after intervention
        B1P012: Population density after intervention000000.058333333333333000.01
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnononononoyesnonono
        B1P013 - Residential: Specify the sqm [m²]
        B1P013: Officenonononoyesnononono
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynonononononononoyes
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnonononoyesyesnonono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnonononononononono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasnononononoyesnoyesyes
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnononononoyesnonono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnonononononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernonononononononono
        B1P013 - Other: Specify the sqm [m²]
        B1P014: Building and Land Use after intervention
        B1P014: Residentialnonononoyesyesnoyesyes
        B1P014 - Residential: Specify the sqm [m²]
        B1P014: Officenonononoyesnononoyes
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynonononononononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnonononoyesyesnonoyes
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnonononononononoyes
        B1P014 - Institutional: Specify the sqm [m²]
        B1P014: Natural areasnononononoyesnoyesyes
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnononononoyesnonoyes
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnonononononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernonononononononono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
        B2P002: Installation life time
        B2P002: Installation life timePermanent installation
        B2P003: Scale of action
        B2P003: ScaleVirtualDistrictVirtual
        B2P004: Operator of the installation
        B2P004: Operator of the installationCM Maia, IPMAIA, NEW, AdEP.IREC
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Strategic
        • Strategic,
        • Private
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabMunicipalityResearch center/University
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        • Academia,
        • Private,
        • Industrial,
        • Citizens, public, NGO,
        • Other
        B2P009: OtherEnergy Agency
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Buildings,
        • Demand-side management,
        • Prosumers,
        • Renewable generation,
        • Energy storage,
        • Efficiency measures,
        • Lighting,
        • E-mobility,
        • Information and Communication Technologies (ICT),
        • Ambient measures,
        • Social interactions
        • Buildings,
        • Demand-side management,
        • Prosumers,
        • Renewable generation,
        • Energy storage,
        • Energy networks,
        • Waste management,
        • E-mobility,
        • Social interactions,
        • Circular economy models
        • Demand-side management,
        • Energy storage,
        • Energy networks,
        • Efficiency measures,
        • Information and Communication Technologies (ICT)
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Monitoring and evaluation infrastructure,
        • Tools, spaces, events for testing and validation
        • Monitoring and evaluation infrastructure,
        • Tools for prototyping and modelling,
        • Tools, spaces, events for testing and validation
        • Monitoring and evaluation infrastructure,
        • Tools for prototyping and modelling,
        • Tools, spaces, events for testing and validation
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        • Execution plan,
        • Available data,
        • Type of measured data
        • Equipment
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy,
        • Environmental,
        • Social,
        • Economical / Financial
        • Energy
        • Energy,
        • Environmental
        B2P016: Execution of operations
        B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
        B2P017: Capacities
        B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
        B2P019: Available tools
        B2P019: Available tools
        • Energy modelling,
        • Social models,
        • Business and financial models,
        • Fundraising and accessing resources,
        • Matching actors
        • Energy modelling
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important4 - Important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant4 - Important
        C1P001: Storage systems and E-mobility market penetration4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important
        C1P001: Decreasing costs of innovative materials4 - Important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important
        C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important
        C1P001: The ability to predict Multiple Benefits4 - Important2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important
        C1P001: The ability to predict the distribution of benefits and impacts4 - Important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant4 - Important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Social acceptance (top-down)5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important
        C1P001: Availability of RES on site (Local RES)4 - Important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important4 - Important4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important
        C1P002: Economic growth need2 - Slightly important4 - Important4 - Important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant3 - Moderately important
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important
        C1P002: Territorial and market attractiveness2 - Slightly important4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P002: Energy autonomy/independence5 - Very important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important5 - Very important5 - Very important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant5 - Very important
        C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
        C1P003: Lack of public participation3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important
        C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important
        C1P003: Complicated and non-comprehensive public procurement4 - Important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important
        C1P003: Fragmented and or complex ownership structure3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant5 - Very important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important5 - Very important4 - Important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant4 - Important
        C1P003: Lack of internal capacities to support energy transition3 - Moderately important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant3 - Moderately important
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important4 - Important5 - Very important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
        C1P005: Regulatory instability3 - Moderately important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P005: Non-effective regulations4 - Important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important
        C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important
        C1P005: Building code and land-use planning hindering innovative technologies4 - Important4 - Important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important
        C1P005: Insufficient or insecure financial incentives4 - Important4 - Important2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant4 - Important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P005: Shortage of proven and tested solutions and examples3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant2 - Slightly important
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriers
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel4 - Important4 - Important2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important
        C1P007: Deficient planning3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important
        C1P007: Retrofitting work in dwellings in occupied state4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Lack of well-defined process4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important
        C1P007: Inaccuracy in energy modelling and simulation4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important
        C1P007: Lack/cost of computational scalability4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant2 - Slightly important
        C1P007: Grid congestion, grid instability4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
        C1P007: Negative effects of project intervention on the natural environment3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
        C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Difficult definition of system boundaries3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia4 - Important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant3 - Moderately important
        C1P008: Lack of values and interest in energy optimization measurements5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important
        C1P008: Low acceptance of new projects and technologies5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important
        C1P008: Difficulty of finding and engaging relevant actors5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important
        C1P008: Lack of trust beyond social network4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
        C1P008: Rebound effect4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant2 - Slightly important
        C1P008: Hostile or passive attitude towards environmentalism5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
        C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
        C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers4 - Important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant4 - Important
        C1P009: Lack of awareness among authorities4 - Important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important
        C1P009: Information asymmetry causing power asymmetry of established actors4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P009: High costs of design, material, construction, and installation4 - Important4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
        C1P010: Insufficient external financial support and funding for project activities4 - Important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important
        C1P010: Economic crisis4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important
        C1P010: Risk and uncertainty4 - Important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important
        C1P010: Lack of consolidated and tested business models4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important
        C1P010: Limited access to capital and cost disincentives4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant2 - Slightly important
        C1P011: Energy price distortion4 - Important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant4 - Important
        C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Research & Innovation
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Financial/Funding
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Analyst, ICT and Big Data
        • Monitoring/operation/management
        • Planning/leading,
        • Monitoring/operation/management
        C1P012: Business process management
        • Planning/leading,
        • Monitoring/operation/management
        • None
        C1P012: Urban Services providers
        • Planning/leading
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Real Estate developers
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Design/Construction companies
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: End‐users/Occupants/Energy Citizens
        • Monitoring/operation/management
        • Design/demand aggregation
        C1P012: Social/Civil Society/NGOs
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Monitoring/operation/management
        C1P012: Industry/SME/eCommerce
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Other
        • None
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)