Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Uncompare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Uncompare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Leon, Former Sugar Factory district
City of Espoo, Espoonlahti district, Lippulaiva block
Maia, Sobreiro Social Housing
Freiburg, Waldsee
Barcelona, SEILAB & Energy SmartLab
Borlänge, Rymdgatan’s Residential Portfolio
Leipzig, Baumwollspinnerei district
Stor-Elvdal, Campus Evenstad
Aveiro, Portugal
Vidin, Himik and Bononia
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityLeon, Former Sugar Factory districtCity of Espoo, Espoonlahti district, Lippulaiva blockMaia, Sobreiro Social HousingFreiburg, WaldseeBarcelona, SEILAB & Energy SmartLabBorlänge, Rymdgatan’s Residential PortfolioLeipzig, Baumwollspinnerei districtStor-Elvdal, Campus EvenstadAveiro, PortugalVidin, Himik and Bononia
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesnoyesnonoyesnonoyes
PED relevant case studyyesnononononoyesnoyesyesno
PED Lab.nononoyesnoyesnonononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynononoyesyesnoyesyesyesyesyes
Annual energy surplusnoyesnonononoyesnoyesnoyes
Energy communityyesnononoyesyesyesnonoyesno
Circularitynonononononononononono
Air quality and urban comfortyesnonononononoyesnonono
Electrificationyesnononoyesyesyesyesnoyesno
Net-zero energy costnonononononononononono
Net-zero emissionnonononoyesyesnonononono
Self-sufficiency (energy autonomous)nononononoyesnonononono
Maximise self-sufficiencynoyesyesyesnonoyesnononono
Othernononononoyesnoyesyesnono
Other (A1P004)Green ITNet-zero emission; Annual energy surplusEnergy-flexibility
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseIn operationPlanning PhasePlanning PhaseIn operationPlanning PhaseImplementation PhaseIn operationPlanning PhasePlanning Phase
A1P006: Start Date
A1P006: Start date12/1806/1810/2111/2101/201101/1312/2312/18
A1P007: End Date
A1P007: End date12/2303/2210/2411/2402/201312/2411/2612/30
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • Meteorological open data
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    •  https://makingcity.eu/wp-content/uploads/2021/12/MakingCity_D4_3_Analysis_of_FWC_candidate_areas_to_become_a_PED_Final.pdf.
    • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
    • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf,
    • www.lippulaiva.fi
      • Data from the local energy provider available (restricted usage for some data points because of data security reasons,
      • renewable energy potential,
      • own calculations based on publicly available data,
      • Some data can be found in https://geoportal.freiburg.de/freigis/
              A1P011: Geographic coordinates
              X Coordinate (longitude):23.814588-5.58479524.6543-8.3735577.8858571358429172.115.39449512.31845811.078770773531746-8.659522.8826
              Y Coordinate (latitude):38.07734942.59339160.149141.13580447.98653520708004541.360.48660951.32649261.4260442039911240.635343.9936
              A1P012: Country
              A1P012: CountryGreeceSpainFinlandPortugalGermanySpainSwedenGermanyNorwayPortugalBulgaria
              A1P013: City
              A1P013: CityMunicipality of KifissiaLeonEspooMaiaFreiburg im BreisgauBarcelona and TarragonaBorlängeLeipzigEvenstad, Stor-Elvdal municipalityAlveiro (Aradas)Vidin
              A1P014: Climate Zone (Köppen Geiger classification)
              A1P014: Climate Zone (Köppen Geiger classification).CsaCsbDfbCsbCfbCsaDsbDfbDwcCsbCfa
              A1P015: District boundary
              A1P015: District boundaryVirtualGeographicGeographicVirtualVirtualVirtualGeographicFunctionalGeographicGeographicGeographic
              OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodGeographic
              A1P016: Ownership of the case study/PED Lab
              A1P016: Ownership of the case study/PED Lab:MixedPrivatePublicMixedPublicMixedPublicPublicMixed
              A1P017: Ownership of the land / physical infrastructure
              A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerSingle OwnerSingle OwnerMultiple OwnersMultiple Owners
              A1P018: Number of buildings in PED
              A1P018: Number of buildings in PED21922294101022274
              A1P019: Conditioned space
              A1P019: Conditioned space [m²]16.069001120002840703700170001000098759.53
              A1P020: Total ground area
              A1P020: Total ground area [m²]73.1456916500049200009945300008930000195234.80
              A1P021: Floor area ratio: Conditioned space / total ground area
              A1P021: Floor area ratio: Conditioned space / total ground area00100001001
              A1P022: Financial schemes
              A1P022a: Financing - PRIVATE - Real estatenonoyesnononononononono
              A1P022a: Add the value in EUR if available [EUR]
              A1P022b: Financing - PRIVATE - ESCO schemenonononononononononono
              A1P022b: Add the value in EUR if available [EUR]
              A1P022c: Financing - PRIVATE - Othernononoyesnonononononono
              A1P022c: Add the value in EUR if available [EUR]
              A1P022d: Financing - PUBLIC - EU structural fundingnonononononononononono
              A1P022d: Add the value in EUR if available [EUR]
              A1P022e: Financing - PUBLIC - National fundingnononoyesnonononoyesyesyes
              A1P022e: Add the value in EUR if available [EUR]
              A1P022f: Financing - PUBLIC - Regional fundingnononoyesnonononononono
              A1P022f: Add the value in EUR if available [EUR]
              A1P022g: Financing - PUBLIC - Municipal fundingnonononoyesnononononono
              A1P022g: Add the value in EUR if available [EUR]
              A1P022h: Financing - PUBLIC - Othernonononononononononono
              A1P022h: Add the value in EUR if available [EUR]
              A1P022i: Financing - RESEARCH FUNDING - EUnonoyesyesyesnononononono
              A1P022i: Add the value in EUR if available [EUR]308875
              A1P022j: Financing - RESEARCH FUNDING - Nationalnonononoyesnononoyesnono
              A1P022j: Add the value in EUR if available [EUR]
              A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononononono
              A1P022k: Add the value in EUR if available [EUR]
              A1P022l: Financing - RESEARCH FUNDING - Othernonononononononononono
              A1P022l: Add the value in EUR if available [EUR]
              A1P022: Other
              A1P023: Economic Targets
              A1P023: Economic Targets
              • Job creation,
              • Positive externalities,
              • Boosting local businesses
              • Positive externalities,
              • Boosting local and sustainable production
              • Job creation,
              • Boosting local and sustainable production
              • Positive externalities,
              • Boosting local businesses,
              • Boosting consumption of local and sustainable products
              • Boosting local businesses,
              • Boosting local and sustainable production
              A1P023: OtherSustainable and replicable business models regarding renewable energy systems
              A1P024: More comments:
              A1P024: More comments:The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVsSemi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
              A1P025: Estimated PED case study / PED LAB costs
              A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
              Contact person for general enquiries
              A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaBegoña Gonzalo OrdenElina EkelundAdelina RodriguesDr. Annette SteingrubeDr. Jaume Salom, Dra. Cristina CorcheroJingchun ShenSimon BaumÅse Lekang SørensenDr. Gonçalo Homem De Almeida Rodriguez CorreiaDaniela Kostova
              A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamMunicipality of LeonCitycon OyjMaia Municipality (CM Maia) – Energy and Mobility divisionFraunhofer Institute for solar energy systemsIRECHögskolan DalarnaCENERO Energy GmbHSINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart CitiesDelft University of TechnologyGreen Synergy Cluster
              A1P028: AffiliationMunicipality / Public BodiesOtherSME / IndustryMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityOtherResearch Center / UniversityResearch Center / UniversityOther
              A1P028: OtherMunicipality of Leon - ILRUVCENERO Energy GmbHCluster
              A1P029: Emailgiavasoglou@kifissia.grbegona.gonzalo@aytoleon.esElina.ekelund@citycon.comdscm.adelina@cm-maia.ptAnnette.Steingrube@ise.fraunhofer.deJsalom@irec.catjih@du.sesib@cenero.dease.sorensen@sintef.nog.correia@tudelft.nldaniela@greensynergycluster.eu
              Contact person for other special topics
              A1P030: NameStavros Zapantis - vice mayorMonica Prada CorralElina EkelundCarolina Gonçalves (AdEPorto)Xingxing ZhangSimon BaumQiaochu Fan
              A1P031: Emailstavros.zapantis@gmail.comMonica.Prada@ilruv.esElina.ekelund@citycon.comcarolinagoncalves@adeporto.euxza@du.sesib@cenero.deq.fan-1@tudelft.nl
              Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYes
              A2P001: Fields of application
              A2P001: Fields of application
              • Energy production
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • E-mobility,
              • Digital technologies
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • E-mobility,
              • Digital technologies
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • E-mobility,
              • Urban comfort (pollution, heat island, noise level etc.),
              • Digital technologies
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • E-mobility,
              • Waste management
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • E-mobility,
              • Digital technologies
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • E-mobility,
              • Construction materials
              • Energy efficiency,
              • Energy flexibility,
              • Energy production
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • E-mobility,
              • Digital technologies,
              • Construction materials
              • Energy efficiency,
              • Energy flexibility,
              • E-mobility,
              • Urban comfort (pollution, heat island, noise level etc.),
              • Digital technologies
              • Energy efficiency,
              • Energy production
              A2P001: Other
              A2P002: Tools/strategies/methods applied for each of the above-selected fields
              A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; Energy flexibility: - testing share energy solutions (public-private stakeholders) Digital technologies - smart city platform - smart energy management E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation.Energy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider ElectricEnergy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:Energy system modelingEnergy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)Load calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.
              A2P003: Application of ISO52000
              A2P003: Application of ISO52000NoYesNoYesNoNoNo
              A2P004: Appliances included in the calculation of the energy balance
              A2P004: Appliances included in the calculation of the energy balanceNoYesYesYesYesYesYesNo
              A2P005: Mobility included in the calculation of the energy balance
              A2P005: Mobility included in the calculation of the energy balanceNoNoNoYesYesNoYesYes
              A2P006: Description of how mobility is included (or not included) in the calculation
              A2P006: Description of how mobility is included (or not included) in the calculationMobility is not included in the energy model.All energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutrality– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhAt Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.
              A2P007: Annual energy demand in buildings / Thermal demand
              A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]3.495.5135.7150.67771.650.77
              A2P008: Annual energy demand in buildings / Electric Demand
              A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.575.831.760.036560.76
              A2P009: Annual energy demand for e-mobility
              A2P009: Annual energy demand for e-mobility [GWh/annum]00
              A2P010: Annual energy demand for urban infrastructure
              A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
              A2P011: Annual renewable electricity production on-site during target year
              A2P011: PVyesyesyesyesnoyesnoyesyesnono
              A2P011: PV - specify production in GWh/annum [GWh/annum]1.240.540.065
              A2P011: Windnonononononononononono
              A2P011: Wind - specify production in GWh/annum [GWh/annum]
              A2P011: Hydronoyesnonononononononono
              A2P011: Hydro - specify production in GWh/annum [GWh/annum]1.28
              A2P011: Biomass_elnonononononononoyesnono
              A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
              A2P011: Biomass_peat_elnonononononononononono
              A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
              A2P011: PVT_elnoyesnonononoyesnononono
              A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.280.01818
              A2P011: Othernonononononononononono
              A2P011: Other - specify production in GWh/annum [GWh/annum]
              A2P012: Annual renewable thermal production on-site during target year
              A2P012: Geothermalnonoyesnononononononono
              A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]5
              A2P012: Solar Thermalnononoyesnonononoyesnono
              A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.045
              A2P012: Biomass_heatnonononononononoyesnono
              A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.35
              A2P012: Waste heat+HPnonononononononononono
              A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
              A2P012: Biomass_peat_heatnonononononononononono
              A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
              A2P012: PVT_thnoyesnonononoyesnononono
              A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
              A2P012: Biomass_firewood_thnonononononononononono
              A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
              A2P012: Othernoyesnonononononononono
              A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
              A2P013: Renewable resources on-site - Additional notes
              A2P013: Renewable resources on-site - Additional notes53 MW PV potential in all three quarters; no other internal renewable energy potentials knownListed values are measurements from 2018. Renewable energy share is increasing.
              A2P014: Annual energy use
              A2P014: Annual energy use [GWh/annum]11.3132.50.3182.4211.500
              A2P015: Annual energy delivered
              A2P015: Annual energy delivered [GWh/annum]5.760.20551
              A2P016: Annual non-renewable electricity production on-site during target year
              A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0000
              A2P017: Annual non-renewable thermal production on-site during target year
              A2P017: Gasnononononoyesnonononono
              A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]0
              A2P017: Coalnonononononononononono
              A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]0
              A2P017: Oilnonononononononononono
              A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]0
              A2P017: Othernonononononoyesnononono
              A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
              A2P018: Annual renewable electricity imports from outside the boundary during target year
              A2P018: PVnonononononononononono
              A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
              A2P018: Windnonononononononononono
              A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
              A2P018: Hydrononononononononononono
              A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
              A2P018: Biomass_elnonononononononononono
              A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
              A2P018: Biomass_peat_elnonononononononononono
              A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
              A2P018: PVT_elnonononononononononono
              A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
              A2P018: Othernonoyesnononoyesnononono
              A2P018 - Other: specify production in GWh/annum if available [GWh/annum]5.260.187
              A2P019: Annual renewable thermal imports from outside the boundary during target year
              A2P019: Geothermalnonononononononononono
              A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Solar Thermalnonononononononononono
              A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Biomass_heatnonononononononononono
              A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Waste heat+HPnonononononononononono
              A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Biomass_peat_heatnonononononononononono
              A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
              A2P019: PVT_thnonononononononononono
              A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Biomass_firewood_thnonononononononononono
              A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Othernonononononoyesnononono
              A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
              A2P020: Share of RES on-site / RES outside the boundary
              A2P020: Share of RES on-site / RES outside the boundary001.05323193916350000.538395721925130000
              A2P021: GHG-balance calculated for the PED
              A2P021: GHG-balance calculated for the PED [tCO2/annum]06.93
              A2P022: KPIs related to the PED case study / PED Lab
              A2P022: Safety & Securitynone
              A2P022: Healththermal comfort diagram
              A2P022: Educationnone
              A2P022: MobilityyesnoneImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districts
              A2P022: EnergyOn-site energy ratioyesnormalized CO2/GHG & Energy intensityapplyTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stability
              A2P022: Water
              A2P022: Economic developmentcost of excess emissionsDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resilience
              A2P022: Housing and Communityyes
              A2P022: Waste
              A2P022: Other
              A2P023: Technological Solutions / Innovations - Energy Generation
              A2P023: Photovoltaicsnoyesyesyesyesyesyesnoyesyesyes
              A2P023: Solar thermal collectorsnoyesnoyesyesnoyesnoyesnono
              A2P023: Wind Turbinesnononononononononoyesno
              A2P023: Geothermal energy systemnonoyesnoyesnoyesnononoyes
              A2P023: Waste heat recoverynonoyesnoyesnoyesnononono
              A2P023: Waste to energynonononoyesnononononono
              A2P023: Polygenerationnonononononononononono
              A2P023: Co-generationnonononoyesnononoyesnono
              A2P023: Heat Pumpnoyesnoyesyesnoyesnononoyes
              A2P023: Hydrogennonononoyesnononononono
              A2P023: Hydropower plantnoyesnonoyesnononononono
              A2P023: Biomassnonononoyesnononoyesnono
              A2P023: Biogasnonononoyesnononononono
              A2P023: OtherThe Co-generation is biomass based.
              A2P024: Technological Solutions / Innovations - Energy Flexibility
              A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesyesyesyesyesnoyesnono
              A2P024: Energy management systemnoyesyesyesyesyesnonoyesyesno
              A2P024: Demand-side managementnoyesnonoyesnononoyesyesno
              A2P024: Smart electricity gridnonoyesnoyesyesnononoyesno
              A2P024: Thermal Storagenonoyesnoyesnoyesnoyesnono
              A2P024: Electric Storagenonoyesyesyesyesnonoyesyesyes
              A2P024: District Heating and Coolingnonononoyesnoyesnoyesnono
              A2P024: Smart metering and demand-responsive control systemsnononoyesyesnononoyesnono
              A2P024: P2P – buildingsnoyesnonoyesnononononono
              A2P024: OtherBidirectional electric vehicle (EV) charging (V2G)
              A2P025: Technological Solutions / Innovations - Energy Efficiency
              A2P025: Deep Retrofittingnoyesnoyesyesnoyesnonoyesyes
              A2P025: Energy efficiency measures in historic buildingsnoyesnonoyesnononononono
              A2P025: High-performance new buildingsnonoyesnononononoyesnono
              A2P025: Smart Public infrastructure (e.g. smart lighting)nonoyesyesnononononoyesno
              A2P025: Urban data platformsnoyesnonoyesnonononoyesno
              A2P025: Mobile applications for citizensnonononononononononono
              A2P025: Building services (HVAC & Lighting)nonoyesyesnoyesyesnononono
              A2P025: Smart irrigationnonononononononononono
              A2P025: Digital tracking for waste disposalnononoyesnonononononono
              A2P025: Smart surveillancenonononononononononono
              A2P025: Other
              A2P026: Technological Solutions / Innovations - Mobility
              A2P026: Efficiency of vehicles (public and/or private)noyesnoyesyesyesnononoyesno
              A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonoyesnoyesnonononoyesno
              A2P026: e-Mobilitynoyesyesyesyesnononoyesyesno
              A2P026: Soft mobility infrastructures and last mile solutionsnoyesnonoyesnononononono
              A2P026: Car-free areanonononononononononono
              A2P026: OtherLocal transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries
              A2P027: Mobility strategies - Additional notes
              A2P027: Mobility strategies - Additional notesTest-Concept for bidirectional charging.
              A2P028: Energy efficiency certificates
              A2P028: Energy efficiency certificatesYesYesYesNoNoYes
              A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEnergy Performance Certificate - in Spain it is mandatory in order to buy or rent a house or a dwelling)Energy Performance Certificate => Energy efficiency class B (2018 version)The Municipal Buildings have an energy certificate, according to the Portuguese legislation.Passive house (2 buildings, 4 200 m2, from 2015)
              A2P029: Any other building / district certificates
              A2P029: Any other building / district certificatesNoYesNoNoNoYes
              A2P029: If yes, please specify and/or enter notesLEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD)Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)
              A3P001: Relevant city /national strategy
              A3P001: Relevant city /national strategy
              • Energy master planning (SECAP, etc.),
              • Promotion of energy communities (REC/CEC)
              • Smart cities strategies,
              • Energy master planning (SECAP, etc.)
              • Energy master planning (SECAP, etc.),
              • New development strategies,
              • Climate change adaption plan/strategy (e.g. Climate City contract),
              • National / international city networks addressing sustainable urban development and climate neutrality
              • Urban Renewal Strategies,
              • Energy master planning (SECAP, etc.),
              • Promotion of energy communities (REC/CEC),
              • Climate change adaption plan/strategy (e.g. Climate City contract)
              • Smart cities strategies
              • Smart cities strategies,
              • New development strategies
              • Promotion of energy communities (REC/CEC),
              • Climate change adaption plan/strategy (e.g. Climate City contract)
              • Promotion of energy communities (REC/CEC),
              • National / international city networks addressing sustainable urban development and climate neutrality
              • Energy master planning (SECAP, etc.),
              • New development strategies
              A3P002: Quantitative targets included in the city / national strategy
              A3P002: Quantitative targets included in the city / national strategyRelevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels.Climate neutrality by 2035The study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.
              A3P003: Strategies towards decarbonization of the gas grid
              A3P003: Strategies towards decarbonization of the gas grid
              • Other
              • Electrification of Heating System based on Heat Pumps,
              • Biogas,
              • Hydrogen
              • Biogas
              A3P003: OtherAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.
              A3P004: Identification of needs and priorities
              A3P004: Identification of needs and priorities- Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district.Freiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district level-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.In our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.
              A3P005: Sustainable behaviour
              A3P005: Sustainable behaviourFor Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners.Energy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economy-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.
              A3P006: Economic strategies
              A3P006: Economic strategies
              • Innovative business models
              • Innovative business models,
              • PPP models,
              • Existing incentives
              • Demand management Living Lab,
              • Local trading,
              • Existing incentives
              • Demand management Living Lab
              • Open data business models,
              • Life Cycle Cost,
              • Circular economy models,
              • Local trading
              • Innovative business models,
              • Other
              • Innovative business models,
              • Local trading,
              • Existing incentives
              A3P006: Otheroperational savings through efficiency measures
              A3P007: Social models
              A3P007: Social models
              • Strategies towards (local) community-building,
              • Behavioural Change / End-users engagement,
              • Citizen/owner involvement in planning and maintenance,
              • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
              • Co-creation / Citizen engagement strategies
              • Co-creation / Citizen engagement strategies,
              • Prevention of energy poverty,
              • Digital Inclusion,
              • Citizen/owner involvement in planning and maintenance,
              • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
              • Strategies towards (local) community-building,
              • Co-creation / Citizen engagement strategies,
              • Behavioural Change / End-users engagement,
              • Citizen/owner involvement in planning and maintenance,
              • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
              • Digital Inclusion,
              • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
              • Strategies towards (local) community-building,
              • Behavioural Change / End-users engagement,
              • Social incentives,
              • Affordability,
              • Digital Inclusion
              • Behavioural Change / End-users engagement
              • Behavioural Change / End-users engagement,
              • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
              • Other
              • Strategies towards (local) community-building,
              • Co-creation / Citizen engagement strategies,
              • Behavioural Change / End-users engagement,
              • Social incentives,
              • Prevention of energy poverty,
              • Digital Inclusion
              • Co-creation / Citizen engagement strategies,
              • Behavioural Change / End-users engagement,
              • Quality of Life,
              • Prevention of energy poverty
              A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
              A3P008: Integrated urban strategies
              A3P008: Integrated urban strategies
              • Strategic urban planning,
              • City Vision 2050,
              • SECAP Updates
              • Building / district Certification
              • City Vision 2050,
              • SECAP Updates,
              • Building / district Certification
              • Strategic urban planning,
              • Digital twinning and visual 3D models,
              • District Energy plans
              • Strategic urban planning,
              • Digital twinning and visual 3D models,
              • District Energy plans,
              • Building / district Certification
              • Strategic urban planning,
              • District Energy plans
              • Strategic urban planning,
              • City Vision 2050,
              • SECAP Updates
              A3P008: Other
              A3P009: Environmental strategies
              A3P009: Environmental strategies
              • Other
              • Energy Neutral,
              • Net zero carbon footprint,
              • Pollutants Reduction
              • Energy Neutral,
              • Low Emission Zone,
              • Pollutants Reduction,
              • Greening strategies
              • Low Emission Zone,
              • Net zero carbon footprint,
              • Life Cycle approach,
              • Sustainable Urban drainage systems (SUDS)
              • Other
              • Low Emission Zone
              • Energy Neutral,
              • Low Emission Zone,
              • Nature Based Solutions (NBS)
              • Pollutants Reduction,
              • Greening strategies
              A3P009: OtherCarbon free in terms of energyPositive Energy Balance for the demo site
              A3P010: Legal / Regulatory aspects
              A3P010: Legal / Regulatory aspects- Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.Campus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.
              B1P001: PED/PED relevant concept definition
              B1P001: PED/PED relevant concept definitionLippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production.Assessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case studyThe Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.The biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.
              B1P002: Motivation behind PED/PED relevant project development
              B1P002: Motivation behind PED/PED relevant project development- Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholdersCity is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regardBorlänge city has committed to become the carbon-neutral city by 2030.In line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.
              B1P003: Environment of the case study area
              B2P003: Environment of the case study areaUrban areaUrban areaSuburban areaUrban areaRuralUrban area
              B1P004: Type of district
              B2P004: Type of district
              • New construction,
              • Renovation
              • New construction
              • Renovation
              • Renovation
              • New construction,
              • Renovation
              • Renovation
              B1P005: Case Study Context
              B1P005: Case Study Context
              • Re-use / Transformation Area,
              • Retrofitting Area,
              • Preservation Area
              • Re-use / Transformation Area,
              • New Development
              • Retrofitting Area
              • Re-use / Transformation Area,
              • Retrofitting Area
              • Preservation Area
              • Retrofitting Area
              • Retrofitting Area
              B1P006: Year of construction
              B1P006: Year of construction20221990
              B1P007: District population before intervention - Residential
              B1P007: District population before intervention - Residential5898100
              B1P008: District population after intervention - Residential
              B1P008: District population after intervention - Residential5898100
              B1P009: District population before intervention - Non-residential
              B1P009: District population before intervention - Non-residential6
              B1P010: District population after intervention - Non-residential
              B1P010: District population after intervention - Non-residential6
              B1P011: Population density before intervention
              B1P011: Population density before intervention00000000000
              B1P012: Population density after intervention
              B1P012: Population density after intervention00000.001198780487804900.0106586224233280000
              B1P013: Building and Land Use before intervention
              B1P013: Residentialnoyesnonoyesnoyesnononoyes
              B1P013 - Residential: Specify the sqm [m²]436064 787,57
              B1P013: Officenonononoyesnononononono
              B1P013 - Office: Specify the sqm [m²]
              B1P013: Industry and Utilitynonononoyesnononononono
              B1P013 - Industry and Utility: Specify the sqm [m²]
              B1P013: Commercialnonoyesnoyesnononononoyes
              B1P013 - Commercial: Specify the sqm [m²]262,33
              B1P013: Institutionalnonononoyesnononononono
              B1P013 - Institutional: Specify the sqm [m²]
              B1P013: Natural areasnonoyesnoyesnononononono
              B1P013 - Natural areas: Specify the sqm [m²]
              B1P013: Recreationalnonononoyesnononononono
              B1P013 - Recreational: Specify the sqm [m²]
              B1P013: Dismissed areasnonononononononononono
              B1P013 - Dismissed areas: Specify the sqm [m²]
              B1P013: Othernoyesnonononoyesnononono
              B1P013 - Other: Specify the sqm [m²]706
              B1P014: Building and Land Use after intervention
              B1P014: Residentialnoyesyesnoyesnoyesnononono
              B1P014 - Residential: Specify the sqm [m²]4360
              B1P014: Officenonononoyesnononononono
              B1P014 - Office: Specify the sqm [m²]
              B1P014: Industry and Utilitynonononoyesnononononono
              B1P014 - Industry and Utility: Specify the sqm [m²]
              B1P014: Commercialnonoyesnoyesnononononono
              B1P014 - Commercial: Specify the sqm [m²]
              B1P014: Institutionalnonononoyesnononononoyes
              B1P014 - Institutional: Specify the sqm [m²]35322.21
              B1P014: Natural areasnonononoyesnononononono
              B1P014 - Natural areas: Specify the sqm [m²]
              B1P014: Recreationalnonononoyesnononononono
              B1P014 - Recreational: Specify the sqm [m²]
              B1P014: Dismissed areasnonononononononononono
              B1P014 - Dismissed areas: Specify the sqm [m²]
              B1P014: Othernoyesnonononoyesnononono
              B1P014 - Other: Specify the sqm [m²]706
              B2P001: PED Lab concept definition
              B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
              B2P002: Installation life time
              B2P002: Installation life timePermanent installation
              B2P003: Scale of action
              B2P003: ScaleVirtualVirtual
              B2P004: Operator of the installation
              B2P004: Operator of the installationCM Maia, IPMAIA, NEW, AdEP.IREC
              B2P005: Replication framework: Applied strategy to reuse and recycling the materials
              B2P005: Replication framework: Applied strategy to reuse and recycling the materials
              B2P006: Circular Economy Approach
              B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
              B2P006: Other
              B2P007: Motivation for developing the PED Lab
              B2P007: Motivation for developing the PED Lab
              • Strategic
              • Strategic,
              • Private
              B2P007: Other
              B2P008: Lead partner that manages the PED Lab
              B2P008: Lead partner that manages the PED LabMunicipalityResearch center/University
              B2P008: Other
              B2P009: Collaborative partners that participate in the PED Lab
              B2P009: Collaborative partners that participate in the PED Lab
              • Academia,
              • Private,
              • Industrial,
              • Citizens, public, NGO,
              • Other
              B2P009: OtherEnergy Agency
              B2P010: Synergies between the fields of activities
              B2P010: Synergies between the fields of activities
              B2P011: Available facilities to test urban configurations in PED Lab
              B2P011: Available facilities to test urban configurations in PED Lab
              • Buildings,
              • Demand-side management,
              • Prosumers,
              • Renewable generation,
              • Energy storage,
              • Efficiency measures,
              • Lighting,
              • E-mobility,
              • Information and Communication Technologies (ICT),
              • Ambient measures,
              • Social interactions
              • Demand-side management,
              • Energy storage,
              • Energy networks,
              • Efficiency measures,
              • Information and Communication Technologies (ICT)
              B2P011: Other
              B2P012: Incubation capacities of PED Lab
              B2P012: Incubation capacities of PED Lab
              • Monitoring and evaluation infrastructure,
              • Tools, spaces, events for testing and validation
              • Monitoring and evaluation infrastructure,
              • Tools for prototyping and modelling,
              • Tools, spaces, events for testing and validation
              B2P013: Availability of the facilities for external people
              B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
              B2P014: Monitoring measures
              B2P014: Monitoring measures
              • Execution plan,
              • Available data,
              • Type of measured data
              • Equipment
              B2P015: Key Performance indicators
              B2P015: Key Performance indicators
              • Energy,
              • Environmental,
              • Social,
              • Economical / Financial
              • Energy,
              • Environmental
              B2P016: Execution of operations
              B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
              B2P017: Capacities
              B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
              B2P018: Relations with stakeholders
              B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
              B2P019: Available tools
              B2P019: Available tools
              • Energy modelling,
              • Social models,
              • Business and financial models,
              • Fundraising and accessing resources,
              • Matching actors
              • Energy modelling
              B2P019: Available tools
              B2P020: External accessibility
              B2P020: External accessibility
              C1P001: Unlocking Factors
              C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant4 - Important5 - Very important5 - Very important4 - Important
              C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important5 - Very important4 - Important5 - Very important
              C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important1 - Unimportant4 - Important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important5 - Very important3 - Moderately important
              C1P001: Storage systems and E-mobility market penetration1 - Unimportant4 - Important4 - Important4 - Important5 - Very important3 - Moderately important5 - Very important5 - Very important4 - Important
              C1P001: Decreasing costs of innovative materials4 - Important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important2 - Slightly important
              C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important1 - Unimportant5 - Very important4 - Important2 - Slightly important5 - Very important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
              C1P001: The ability to predict Multiple Benefits1 - Unimportant4 - Important4 - Important3 - Moderately important4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important
              C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant4 - Important4 - Important2 - Slightly important4 - Important4 - Important1 - Unimportant4 - Important2 - Slightly important
              C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important5 - Very important
              C1P001: Social acceptance (top-down)5 - Very important1 - Unimportant2 - Slightly important4 - Important4 - Important1 - Unimportant5 - Very important4 - Important4 - Important4 - Important
              C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant2 - Slightly important4 - Important4 - Important1 - Unimportant4 - Important4 - Important5 - Very important5 - Very important
              C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important5 - Very important
              C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important5 - Very important1 - Unimportant4 - Important5 - Very important
              C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important
              C1P001: Availability of RES on site (Local RES)1 - Unimportant5 - Very important4 - Important4 - Important4 - Important5 - Very important5 - Very important5 - Very important5 - Very important
              C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important5 - Very important2 - Slightly important3 - Moderately important5 - Very important4 - Important
              C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
              C1P001: Any other UNLOCKING FACTORS (if any)
              C1P002: Driving Factors
              C1P002: Climate Change adaptation need4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important4 - Important5 - Very important3 - Moderately important4 - Important4 - Important
              C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important1 - Unimportant4 - Important4 - Important4 - Important4 - Important5 - Very important5 - Very important5 - Very important5 - Very important
              C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
              C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important
              C1P002: Economic growth need2 - Slightly important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important5 - Very important
              C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important
              C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
              C1P002: Energy autonomy/independence5 - Very important1 - Unimportant4 - Important4 - Important3 - Moderately important5 - Very important2 - Slightly important4 - Important5 - Very important2 - Slightly important
              C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P002: Any other DRIVING FACTOR (if any)
              C1P003: Administrative barriers
              C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant4 - Important5 - Very important4 - Important4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant
              C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important5 - Very important
              C1P003: Lack of public participation3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important5 - Very important
              C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important5 - Very important
              C1P003:Long and complex procedures for authorization of project activities5 - Very important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important5 - Very important5 - Very important3 - Moderately important3 - Moderately important5 - Very important
              C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important4 - Important2 - Slightly important3 - Moderately important5 - Very important
              C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important3 - Moderately important5 - Very important2 - Slightly important3 - Moderately important5 - Very important
              C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important5 - Very important4 - Important3 - Moderately important2 - Slightly important5 - Very important
              C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important4 - Important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important
              C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important5 - Very important
              C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P003: Any other Administrative BARRIER (if any)
              C1P004: Policy barriers
              C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important5 - Very important3 - Moderately important
              C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important4 - Important5 - Very important
              C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important4 - Important3 - Moderately important4 - Important5 - Very important
              C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P004: Any other Political BARRIER (if any)
              C1P005: Legal and Regulatory barriers
              C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant2 - Slightly important4 - Important4 - Important5 - Very important4 - Important5 - Very important5 - Very important5 - Very important
              C1P005: Regulatory instability3 - Moderately important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important2 - Slightly important2 - Slightly important3 - Moderately important4 - Important5 - Very important
              C1P005: Non-effective regulations4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important3 - Moderately important4 - Important
              C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant2 - Slightly important4 - Important5 - Very important4 - Important4 - Important3 - Moderately important4 - Important5 - Very important
              C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important2 - Slightly important
              C1P005: Insufficient or insecure financial incentives4 - Important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important5 - Very important3 - Moderately important4 - Important5 - Very important5 - Very important
              C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important
              C1P005: Shortage of proven and tested solutions and examples1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important4 - Important4 - Important3 - Moderately important4 - Important1 - Unimportant
              C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P005: Any other Legal and Regulatory BARRIER (if any)
              C1P006: Environmental barriers
              C1P006: Environmental barriers2 - Slightly important
              C1P007: Technical barriers
              C1P007: Lack of skilled and trained personnel4 - Important1 - Unimportant4 - Important4 - Important4 - Important5 - Very important4 - Important3 - Moderately important4 - Important5 - Very important
              C1P007: Deficient planning3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant4 - Important5 - Very important
              C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important5 - Very important
              C1P007: Lack of well-defined process4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important4 - Important2 - Slightly important3 - Moderately important4 - Important5 - Very important
              C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant2 - Slightly important4 - Important2 - Slightly important5 - Very important2 - Slightly important3 - Moderately important4 - Important5 - Very important
              C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important5 - Very important4 - Important1 - Unimportant
              C1P007: Grid congestion, grid instability4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important5 - Very important5 - Very important5 - Very important5 - Very important2 - Slightly important
              C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important
              C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important
              C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
              C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
              C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
              C1P008: Social and Cultural barriers
              C1P008: Inertia4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important4 - Important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important
              C1P008: Lack of values and interest in energy optimization measurements5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important5 - Very important3 - Moderately important5 - Very important5 - Very important
              C1P008: Low acceptance of new projects and technologies5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important5 - Very important5 - Very important3 - Moderately important5 - Very important4 - Important
              C1P008: Difficulty of finding and engaging relevant actors5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant4 - Important4 - Important
              C1P008: Lack of trust beyond social network4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant5 - Very important4 - Important
              C1P008: Rebound effect4 - Important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
              C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important
              C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
              C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important4 - Important5 - Very important
              C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
              C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P008: Any other Social BARRIER (if any)
              C1P009: Information and Awareness barriers
              C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important5 - Very important
              C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant1 - Unimportant4 - Important2 - Slightly important5 - Very important3 - Moderately important3 - Moderately important4 - Important4 - Important
              C1P009: Lack of awareness among authorities1 - Unimportant1 - Unimportant4 - Important2 - Slightly important2 - Slightly important5 - Very important4 - Important3 - Moderately important5 - Very important
              C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important
              C1P009: High costs of design, material, construction, and installation1 - Unimportant4 - Important4 - Important4 - Important5 - Very important5 - Very important5 - Very important5 - Very important5 - Very important
              C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
              C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
              C1P010: Financial barriers
              C1P010: Hidden costs1 - Unimportant2 - Slightly important4 - Important2 - Slightly important5 - Very important5 - Very important5 - Very important3 - Moderately important3 - Moderately important
              C1P010: Insufficient external financial support and funding for project activities1 - Unimportant3 - Moderately important4 - Important3 - Moderately important5 - Very important5 - Very important5 - Very important4 - Important5 - Very important
              C1P010: Economic crisis1 - Unimportant4 - Important4 - Important3 - Moderately important4 - Important5 - Very important1 - Unimportant3 - Moderately important5 - Very important
              C1P010: Risk and uncertainty1 - Unimportant3 - Moderately important4 - Important4 - Important5 - Very important5 - Very important5 - Very important4 - Important5 - Very important
              C1P010: Lack of consolidated and tested business models1 - Unimportant4 - Important4 - Important3 - Moderately important5 - Very important5 - Very important5 - Very important5 - Very important5 - Very important
              C1P010: Limited access to capital and cost disincentives1 - Unimportant3 - Moderately important4 - Important2 - Slightly important5 - Very important4 - Important5 - Very important5 - Very important
              C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P010: Any other Financial BARRIER (if any)
              C1P011: Market barriers
              C1P011: Split incentives1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important4 - Important4 - Important1 - Unimportant4 - Important5 - Very important
              C1P011: Energy price distortion1 - Unimportant3 - Moderately important4 - Important3 - Moderately important5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important
              C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant3 - Moderately important4 - Important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
              C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P011: Any other Market BARRIER (if any)
              C1P012: Stakeholders involved
              C1P012: Government/Public Authorities
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation
              • Planning/leading
              • Monitoring/operation/management
              • Planning/leading
              • Planning/leading,
              • Monitoring/operation/management
              C1P012: Research & Innovation
              • Planning/leading,
              • Design/demand aggregation
              • Construction/implementation,
              • Monitoring/operation/management
              • Planning/leading
              • Monitoring/operation/management
              • None
              C1P012: Financial/Funding
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation
              • None
              • None
              • Construction/implementation
              • Construction/implementation,
              • Monitoring/operation/management
              C1P012: Analyst, ICT and Big Data
              • Planning/leading,
              • Design/demand aggregation,
              • Monitoring/operation/management
              • None
              • None
              • Monitoring/operation/management
              • None
              C1P012: Business process management
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation
              • None
              • None
              • Planning/leading
              • None
              C1P012: Urban Services providers
              • None
              • None
              • None
              C1P012: Real Estate developers
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • None
              • Design/demand aggregation
              • Planning/leading,
              • Monitoring/operation/management
              C1P012: Design/Construction companies
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation
              • Construction/implementation
              • None
              • Construction/implementation
              • Design/demand aggregation,
              • Construction/implementation
              C1P012: End‐users/Occupants/Energy Citizens
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • Planning/leading,
              • Construction/implementation,
              • Monitoring/operation/management
              • Monitoring/operation/management
              • Monitoring/operation/management
              • Construction/implementation
              C1P012: Social/Civil Society/NGOs
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation
              • Construction/implementation,
              • Monitoring/operation/management
              • Monitoring/operation/management
              • None
              • Design/demand aggregation
              C1P012: Industry/SME/eCommerce
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • None
              • None
              • Construction/implementation
              • Design/demand aggregation,
              • Construction/implementation
              C1P012: Other
              C1P012: Other (if any)
              Summary

              Authors (framework concept)

              Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

              Contributors (to the content)

              Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

              Implemented by

              Boutik.pt: Filipe Martins, Jamal Khan
              Marek Suchánek (Czech Technical University in Prague)