Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Uncompare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Uncompare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Uncompare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Uncompare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Uncompare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Barcelona, Santa Coloma de Gramenet
Vienna, Am Kempelenpark
Maia, Sobreiro Social Housing
Oulu, Kaukovainio
Innsbruck, Campagne-Areal
Tartu, City centre area
Barcelona, SEILAB & Energy SmartLab
Stor-Elvdal, Campus Evenstad
Halmstad, Fyllinge
Zaragoza, Actur
Izmir, District of Karşıyaka
Espoo, Leppävaara district, Sello center
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityBarcelona, Santa Coloma de GramenetVienna, Am KempelenparkMaia, Sobreiro Social HousingOulu, KaukovainioInnsbruck, Campagne-ArealTartu, City centre areaBarcelona, SEILAB & Energy SmartLabStor-Elvdal, Campus EvenstadHalmstad, FyllingeZaragoza, ActurIzmir, District of KarşıyakaEspoo, Leppävaara district, Sello center
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesnoyesnonononononoyesyes
PED relevant case studyyesnonononoyesyesnoyesyesyesnono
PED Lab.nononoyesnonoyesyesnonononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyesyesnoyesnoyesyesyes
Annual energy surplusnoyesyesnononononoyesnoyesyesno
Energy communityyesnonononononoyesnoyesnonono
Circularitynonononoyesnoyesnononononono
Air quality and urban comfortyesyesnononononononononoyesno
Electrificationyesnononoyesnoyesyesnonoyesnono
Net-zero energy costnononononononononononoyesno
Net-zero emissionnononononoyesyesyesnonoyesnono
Self-sufficiency (energy autonomous)nononononononoyesnonononono
Maximise self-sufficiencynononoyesnonoyesnonononoyesyes
Othernononononononoyesyesnononono
Other (A1P004)Green ITEnergy-flexibility
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseImplementation PhasePlanning PhasePlanning PhaseIn operationCompletedImplementation PhaseIn operationIn operationPlanning PhasePlanning PhasePlanning PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date07/1610/2104/1602/1601/201101/1301/2101/2310/2209/19
A1P007: End Date
A1P007: End date02/2510/2404/2207/2202/201312/2401/3010/2510/22
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • General statistical datasets
  • Monitoring data available within the districts,
  • Meteorological open data
  • General statistical datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • General statistical datasets
A1P009: OtherOther
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
        • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
        • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf
        A1P011: Geographic coordinates
        X Coordinate (longitude):23.8145882.1616.395292-8.37355725.51759508409350711.42434673814025626.7227372.111.07877077353174612.92054-0.889127.11004924.8101
        Y Coordinate (latitude):38.07734941.3948.17359841.13580464.9928809817313247.27147078672910458.38071341.361.4260442039911256.6519441.648838.49605460.2179
        A1P012: Country
        A1P012: CountryGreeceSpainAustriaPortugalFinlandAustriaEstoniaSpainNorwaySwedenSpainTurkeyFinland
        A1P013: City
        A1P013: CityMunicipality of KifissiaBarcelonaViennaMaiaOuluInnsbruckTartuBarcelona and TarragonaEvenstad, Stor-Elvdal municipalityHalmstadZaragozaİzmirEspoo
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CsaCsaCwbCsbDfcDfbDfbCsaDwcDwbBSkCsaDfb
        A1P015: District boundary
        A1P015: District boundaryVirtualGeographicGeographicVirtualGeographicFunctionalVirtualGeographicGeographicGeographicGeographicGeographic
        OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodRegional (close to virtual)
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:PrivatePrivatePublicMixedMixedPrivatePublicPublicMixedPublicPrivate
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Single OwnerSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerSingle OwnerMultiple OwnersMultiple OwnersMultiple OwnersMultiple Owners
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED1662264180222506215
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]2154219700222773521710000102795267956
        A1P020: Total ground area
        A1P020: Total ground area [m²]60000113517931443260053000
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area0000020000035
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenonononoyesnoyesnonoyesnonono
        A1P022a: Add the value in EUR if available [EUR]6500000
        A1P022b: Financing - PRIVATE - ESCO schemenonononononononononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernononoyesnonononononononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnonononononoyesnononononono
        A1P022d: Add the value in EUR if available [EUR]4000000
        A1P022e: Financing - PUBLIC - National fundingnononoyesnonoyesnoyesnononono
        A1P022e: Add the value in EUR if available [EUR]8000000
        A1P022f: Financing - PUBLIC - Regional fundingnononoyesnonononononononono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnonononoyesnononononononono
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernonononononononononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnoyesnoyesyesnonononoyesnoyesyes
        A1P022i: Add the value in EUR if available [EUR]5039031193355629000
        A1P022j: Financing - RESEARCH FUNDING - Nationalnononononoyesnonoyesnonoyesno
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernonononononononononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: Other
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Positive externalities
        • Positive externalities,
        • Boosting local and sustainable production
        • Positive externalities,
        • Boosting local and sustainable production
        • Job creation,
        • Other
        • Positive externalities
        • Job creation,
        • Boosting local and sustainable production
        • Boosting local businesses,
        • Boosting local and sustainable production
        • Boosting local and sustainable production
        • Positive externalities,
        • Boosting local and sustainable production
        • Job creation,
        • Positive externalities,
        • Boosting local businesses
        A1P023: OtherDeveloping and demonstrating new solutionsCreate affordable appartments for the citizens
        A1P024: More comments:
        A1P024: More comments:Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]525
        Contact person for general enquiries
        A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaJaume SalomGerhard HoferAdelina RodriguesSamuli RinneGeorgios DermentzisJaanus TammDr. Jaume Salom, Dra. Cristina CorcheroÅse Lekang SørensenMarkus OlofsgårdClara LorenteOzlem SenyolJaano Juhmen
        A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamIRECe7 energy innovation & engineeringMaia Municipality (CM Maia) – Energy and Mobility divisionCity of OuluUniversity of InnsbruckTartu City GovernmentIRECSINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart CitiesAFRYCIRCEKarsiyaka MunicipalitySIEMENS - Data Center Forum
        A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversitySME / IndustryMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityOtherResearch Center / UniversityMunicipality / Public BodiesSME / Industry
        A1P028: Other
        A1P029: Emailgiavasoglou@kifissia.grjsalom@irec.catgerhard.hofer@e-sieben.atdscm.adelina@cm-maia.ptsamuli.rinne@ouka.fiGeorgios.Dermentzis@uibk.ac.atJaanus.tamm@tartu.eeJsalom@irec.catase.sorensen@sintef.nomarkus.olofsgard@afry.comCLORENTEM@FCIRCE.COMozlemkocaer2@gmail.comJaano.juhmen@siemens.com
        Contact person for other special topics
        A1P030: NameStavros Zapantis - vice mayorJoan Estrada AliberasCarolina Gonçalves (AdEPorto)Samuli RinneKaspar AlevHasan Burak Cavka
        A1P031: Emailstavros.zapantis@gmail.comj_estrada@gencat.catcarolinagoncalves@adeporto.eusamuli.rinne@ouka.fiKaspar.alev@tartu.eehasancavka@iyte.edu.tr
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Digital technologies
        • Energy efficiency,
        • Energy production,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Waste management
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Water use,
        • Indoor air quality
        • Energy efficiency,
        • Energy production,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Construction materials
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Urban comfort (pollution, heat island, noise level etc.)
        A2P001: Other
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fields- Integrated energy design process of both active and passive elements - Multicriteria analysis of energy system, environmental variables, indoor comfort and economic parameters - Energy modelling - Predictive control to optimize performance within the neighbourhoodEnergy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:Different kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.The buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed.Energy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)Campus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.link based regulation of electricity gridMethods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoNoNoNoNoNoYes
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceNoYesNoYesYesYesYesNoYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoNoNoYesYesYesNo
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationNot included. However, there is a charging place for a shared EV in one building.– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhAt Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.Mobility is not included in the calculations.
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.10.399.10.773.862
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.20.6550.761.226
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]0
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesyesnoyesyesyesyesyesyesyesnoyesno
        A2P011: PV - specify production in GWh/annum [GWh/annum]0.050.10.420.0651.028
        A2P011: Windnonononononononononononono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydrononononononononononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnonononononononoyesnononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
        A2P011: Biomass_peat_elnonononononononononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnonononononononononononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernoyesnonononononononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnononononononononoyesnonono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnononoyesnonoyesnoyesnononono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.50.045
        A2P012: Biomass_heatnonononononononoyesnononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.35
        A2P012: Waste heat+HPnonononoyesnononononononono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.2
        A2P012: Biomass_peat_heatnonononononononononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnonononononononononononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnonononononononononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernonononononononononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notes-Rooftop PV 39.1 kWp -4 pipe air-to-water heat pump to cover heating and coolingHeat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)Listed values are measurements from 2018. Renewable energy share is increasing.
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]0.0332.30.961.5005.088
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]0.030-21
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]000
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnononononononoyesnononoyesno
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnonononononononononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnonononononononononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernonononononononononononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnonononoyesnonononononoyesno
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.707
        A2P018: Windnonononoyesnononononononono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydrononononoyesnononononononono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnonononoyesnononononononono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnonononoyesnononononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnonononononononononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernonononononononononononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnonononononononononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnonononononononononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnonononoyesnononononononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
        A2P019: Waste heat+HPnonononononononononononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnonononononononononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnonononononononononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnonononononononononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernonononononononononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary00003.28571428571430000001.45403111739750
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]0980
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Security
        A2P022: HealthCarbon Dioxide (CO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levelsEncouraging a healthy lifestyleindoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold.
        A2P022: Education
        A2P022: MobilityModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV charging
        A2P022: EnergyNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissionsFinal energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reductionSpace heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production.
        A2P022: Water
        A2P022: Economic development: Investment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost ComparisonTotal investments, Payback time, Economic value of savings
        A2P022: Housing and Community: Access to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousnessDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy poverty
        A2P022: WasteRecycling rate
        A2P022: OtherSmart Cities strategies, Quality of open data
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsnoyesnoyesyesyesyesyesyesyesyesyesno
        A2P023: Solar thermal collectorsnononoyesnonononoyesnononono
        A2P023: Wind Turbinesnonononononononononononono
        A2P023: Geothermal energy systemnonononononononononoyesnono
        A2P023: Waste heat recoverynonononoyesnononononononono
        A2P023: Waste to energynonononononononononononono
        A2P023: Polygenerationnonononononononononononono
        A2P023: Co-generationnonononoyesnononoyesnononono
        A2P023: Heat Pumpnoyesnoyesyesyesnonononoyesyesno
        A2P023: Hydrogennonononononononononononono
        A2P023: Hydropower plantnonononononononononononono
        A2P023: Biomassnonononoyesnoyesnoyesnononono
        A2P023: Biogasnonononononoyesnononononono
        A2P023: OtherThe Co-generation is biomass based.
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)nononoyesyesnoyesyesyesyesnonono
        A2P024: Energy management systemnoyesnoyesyesnoyesyesyesnoyesnono
        A2P024: Demand-side managementnoyesnonononononoyesyesnonono
        A2P024: Smart electricity gridnononononononoyesnoyesnonono
        A2P024: Thermal Storagenonononoyesyesnonoyesnononono
        A2P024: Electric Storagenononoyesnononoyesyesnononono
        A2P024: District Heating and Coolingnonononoyesyesyesnoyesnononono
        A2P024: Smart metering and demand-responsive control systemsnononoyesnonononoyesyesnonono
        A2P024: P2P – buildingsnononononoyesnonononononono
        A2P024: OtherBidirectional electric vehicle (EV) charging (V2G)
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnononoyesyesnoyesnonononoyesno
        A2P025: Energy efficiency measures in historic buildingsnonononononononononononono
        A2P025: High-performance new buildingsnoyesnonoyesyesnonoyesnononono
        A2P025: Smart Public infrastructure (e.g. smart lighting)nononoyesnonoyesnononononono
        A2P025: Urban data platformsnonononoyesnoyesnononononono
        A2P025: Mobile applications for citizensnonononononoyesnononononono
        A2P025: Building services (HVAC & Lighting)noyesnoyesyesyesnoyesnononoyesno
        A2P025: Smart irrigationnonononononononononononono
        A2P025: Digital tracking for waste disposalnononoyesnonononononononono
        A2P025: Smart surveillancenonononononoyesnononononono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)nononoyesyesnoyesyesnonononono
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonononoyesnoyesnononononono
        A2P026: e-Mobilitynononoyesyesnoyesnoyesnoyesnono
        A2P026: Soft mobility infrastructures and last mile solutionsnonononoyesnononononononono
        A2P026: Car-free areanonononononononononononono
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notes
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesYesYesYesYesYesNoYesNo
        A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEnergy Performance CertificateThe Municipal Buildings have an energy certificate, according to the Portuguese legislation.The obligatory buildijng energy classificationTwo buildings are certified "Passive House new build"Passive house (2 buildings, 4 200 m2, from 2015)
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNoNoNoYesNoNo
        A2P029: If yes, please specify and/or enter notesZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC)
        • Urban Renewal Strategies,
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Smart cities strategies,
        • Urban Renewal Strategies,
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies
        • Energy master planning (SECAP, etc.)
        • Smart cities strategies,
        • New development strategies
        • Promotion of energy communities (REC/CEC),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Promotion of energy communities (REC/CEC)
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Energy master planning (SECAP, etc.),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyCarbon neutrality by 2035Karşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Other
        • Electrification of Heating System based on Heat Pumps,
        • Other
        • Biogas,
        • Hydrogen
        • Electrification of Heating System based on Heat Pumps
        • Electrification of Heating System based on Heat Pumps
        A3P003: OtherAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.District heating based mainly on heat pumps and renewable sources
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesDeveloping and demonstrating solutions for carbon neutralityThe priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems.-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.According to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviourE. g. visualizing energy and water consumption-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Innovative business models,
        • PPP models,
        • Existing incentives
        • Open data business models,
        • Innovative business models,
        • PPP models,
        • Life Cycle Cost,
        • Circular economy models
        • Innovative business models,
        • PPP models,
        • Life Cycle Cost,
        • Existing incentives
        • Demand management Living Lab
        • Local trading
        A3P006: Other
        A3P007: Social models
        A3P007: Social models
        • Co-creation / Citizen engagement strategies,
        • Prevention of energy poverty,
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen Social Research,
        • Policy Forums,
        • Quality of Life,
        • Strategies towards social mix,
        • Affordability,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Co-creation / Citizen engagement strategies,
        • Social incentives,
        • Affordability,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen Social Research,
        • Policy Forums,
        • Social incentives,
        • Quality of Life,
        • Prevention of energy poverty,
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Digital Inclusion,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Behavioural Change / End-users engagement,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
        • Other
        • Behavioural Change / End-users engagement,
        • Citizen/owner involvement in planning and maintenance
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Affordability
        A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • City Vision 2050,
        • SECAP Updates,
        • Building / district Certification
        • Strategic urban planning,
        • District Energy plans,
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning,
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning
        • Digital twinning and visual 3D models,
        • District Energy plans,
        • SECAP Updates
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral,
        • Net zero carbon footprint,
        • Pollutants Reduction
        • Energy Neutral,
        • Net zero carbon footprint
        • Energy Neutral,
        • Low Emission Zone
        • Net zero carbon footprint,
        • Carbon-free,
        • Pollutants Reduction,
        • Greening strategies,
        • Sustainable Urban drainage systems (SUDS),
        • Nature Based Solutions (NBS)
        • Energy Neutral,
        • Low Emission Zone,
        • Pollutants Reduction,
        • Greening strategies
        • Low Emission Zone
        • Energy Neutral,
        • Carbon-free
        • Energy Neutral,
        • Low Emission Zone,
        • Pollutants Reduction
        A3P009: Other
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.Campus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionThe original idea is that the area produces at least as much it consumes.Extremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation.The biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.The pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentDeveloping systems towards carbon neutrality. Also urban renewal.Since it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial.In line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaUrban areaUrban areaSuburban areaUrban areaUrban areaRuralSuburban areaUrban areaUrban area
        B1P004: Type of district
        B2P004: Type of district
        • New construction
        • Renovation
        • New construction,
        • Renovation
        • New construction
        • Renovation
        • New construction,
        • Renovation
        • New construction
        • Renovation
        • Renovation
        B1P005: Case Study Context
        B1P005: Case Study Context
        • New Development
        • Re-use / Transformation Area,
        • New Development
        • New Development,
        • Retrofitting Area
        • Re-use / Transformation Area,
        • New Development
        • Retrofitting Area
        • Retrofitting Area
        • New Development
        • Retrofitting Area
        • Retrofitting Area
        B1P006: Year of construction
        B1P006: Year of construction20222005
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential35004500
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential3500780
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P011: Population density before intervention
        B1P011: Population density before intervention0000000000000
        B1P012: Population density after intervention
        B1P012: Population density after intervention00000.0583333333333330.0687164126508680000000
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnoyesnonoyesnoyesnonononoyesno
        B1P013 - Residential: Specify the sqm [m²]102795
        B1P013: Officenonoyesnononononononononono
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynonononononononononononono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnonoyesnoyesnoyesnononononono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnonononononononononononono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasnonononoyesnoyesnonoyesnonono
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnonononoyesnoyesnononononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnonononononononononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernonononononononononononono
        B1P013 - Other: Specify the sqm [m²]
        B1P014: Building and Land Use after intervention
        B1P014: Residentialnoyesyesnoyesyesyesnonononoyesno
        B1P014 - Residential: Specify the sqm [m²]102795
        B1P014: Officenonoyesnononononononononono
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynonononononononononononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnonoyesnoyesyesyesnononononono
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnononononoyesnonononononono
        B1P014 - Institutional: Specify the sqm [m²]
        B1P014: Natural areasnonononoyesnoyesnononononono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnonononoyesyesyesnononononono
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnonononononononononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernonononononononononononono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
        B2P002: Installation life time
        B2P002: Installation life timePermanent installation
        B2P003: Scale of action
        B2P003: ScaleVirtualDistrictVirtual
        B2P004: Operator of the installation
        B2P004: Operator of the installationCM Maia, IPMAIA, NEW, AdEP.IREC
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?NoNoNo
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Strategic
        • Strategic
        • Strategic,
        • Private
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabMunicipalityMunicipalityResearch center/University
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        • Academia,
        • Private,
        • Industrial,
        • Citizens, public, NGO,
        • Other
        • Academia,
        • Private,
        • Industrial,
        • Citizens, public, NGO
        B2P009: OtherEnergy Agency
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Buildings,
        • Demand-side management,
        • Prosumers,
        • Renewable generation,
        • Energy storage,
        • Efficiency measures,
        • Lighting,
        • E-mobility,
        • Information and Communication Technologies (ICT),
        • Ambient measures,
        • Social interactions
        • Buildings,
        • Prosumers,
        • Renewable generation,
        • Energy networks,
        • Lighting,
        • E-mobility,
        • Green areas,
        • User interaction/participation,
        • Information and Communication Technologies (ICT)
        • Demand-side management,
        • Energy storage,
        • Energy networks,
        • Efficiency measures,
        • Information and Communication Technologies (ICT)
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Monitoring and evaluation infrastructure,
        • Tools, spaces, events for testing and validation
        • Monitoring and evaluation infrastructure,
        • Pivoting and risk-mitigating measures
        • Monitoring and evaluation infrastructure,
        • Tools for prototyping and modelling,
        • Tools, spaces, events for testing and validation
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        • Execution plan,
        • Available data,
        • Type of measured data
        • Available data,
        • Life Cycle Analysis
        • Equipment
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy,
        • Environmental,
        • Social,
        • Economical / Financial
        • Energy,
        • Sustainability,
        • Social,
        • Economical / Financial
        • Energy,
        • Environmental
        B2P016: Execution of operations
        B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
        B2P017: Capacities
        B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
        B2P019: Available tools
        B2P019: Available tools
        • Energy modelling,
        • Social models,
        • Business and financial models,
        • Fundraising and accessing resources,
        • Matching actors
        • Social models
        • Energy modelling
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
        C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P001: Storage systems and E-mobility market penetration1 - Unimportant1 - Unimportant4 - Important1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Decreasing costs of innovative materials4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
        C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant
        C1P001: The ability to predict Multiple Benefits1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important1 - Unimportant
        C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant1 - Unimportant4 - Important2 - Slightly important3 - Moderately important4 - Important4 - Important1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant4 - Important4 - Important4 - Important2 - Slightly important1 - Unimportant
        C1P001: Social acceptance (top-down)5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important4 - Important1 - Unimportant4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important5 - Very important1 - Unimportant
        C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important5 - Very important1 - Unimportant
        C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important4 - Important4 - Important1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant
        C1P001: Availability of RES on site (Local RES)1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important4 - Important4 - Important5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important4 - Important5 - Very important3 - Moderately important3 - Moderately important5 - Very important5 - Very important1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important4 - Important3 - Moderately important3 - Moderately important5 - Very important5 - Very important1 - Unimportant
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important5 - Very important4 - Important5 - Very important3 - Moderately important5 - Very important5 - Very important1 - Unimportant
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
        C1P002: Economic growth need2 - Slightly important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P002: Energy autonomy/independence5 - Very important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important4 - Important4 - Important5 - Very important4 - Important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant
        C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
        C1P003: Lack of public participation3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
        C1P003:Long and complex procedures for authorization of project activities5 - Very important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant4 - Important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important5 - Very important1 - Unimportant
        C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
        C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant
        C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant
        C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important4 - Important1 - Unimportant
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
        C1P005: Regulatory instability3 - Moderately important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P005: Non-effective regulations4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P005: Insufficient or insecure financial incentives4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P005: Shortage of proven and tested solutions and examples1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriersUrban area very high buildings (and apartment) density and thus, less available space for renewable sources.- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important2 - Slightly important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P007: Deficient planning3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
        C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant
        C1P007: Lack of well-defined process4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant
        C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important5 - Very important2 - Slightly important5 - Very important1 - Unimportant
        C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
        C1P007: Grid congestion, grid instability4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
        C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
        C1P008: Social and Cultural barriers
        C1P008: Inertia4 - Important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P008: Lack of values and interest in energy optimization measurements5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
        C1P008: Low acceptance of new projects and technologies5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P008: Difficulty of finding and engaging relevant actors5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important2 - Slightly important4 - Important1 - Unimportant
        C1P008: Lack of trust beyond social network4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
        C1P008: Rebound effect4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
        C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
        C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
        C1P009: Lack of awareness among authorities1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
        C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
        C1P009: High costs of design, material, construction, and installation1 - Unimportant1 - Unimportant4 - Important3 - Moderately important5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
        C1P010: Financial barriers
        C1P010: Hidden costs1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
        C1P010: Insufficient external financial support and funding for project activities1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P010: Economic crisis1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P010: Risk and uncertainty1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important5 - Very important5 - Very important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
        C1P010: Lack of consolidated and tested business models1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant4 - Important1 - Unimportant
        C1P010: Limited access to capital and cost disincentives1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P011: Energy price distortion1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Planning/leading
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading
        • Design/demand aggregation
        C1P012: Research & Innovation
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        C1P012: Financial/Funding
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        • Construction/implementation
        C1P012: Analyst, ICT and Big Data
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Planning/leading,
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Monitoring/operation/management
        C1P012: Business process management
        • Planning/leading,
        • Monitoring/operation/management
        • Planning/leading
        • Planning/leading
        • Design/demand aggregation
        C1P012: Urban Services providers
        • Planning/leading
        • Construction/implementation
        • Construction/implementation
        • Design/demand aggregation
        C1P012: Real Estate developers
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading
        • None
        • Planning/leading,
        • Monitoring/operation/management
        • Construction/implementation
        C1P012: Design/Construction companies
        • Design/demand aggregation
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Construction/implementation
        • Design/demand aggregation
        C1P012: End‐users/Occupants/Energy Citizens
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Monitoring/operation/management
        C1P012: Social/Civil Society/NGOs
        • Monitoring/operation/management
        • Planning/leading
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        • Design/demand aggregation
        C1P012: Industry/SME/eCommerce
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Construction/implementation
        • Construction/implementation
        C1P012: Other
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)