Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Uncompare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Aalborg East PED Relevant Case Study / PED Lab Uncompare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Barcelona, Santa Coloma de Gramenet
Barcelona, SEILAB & Energy SmartLab
Izmir, District of Karşıyaka
Istanbul, Kadikoy district, Caferaga
Umeå, Ålidhem district
Roubaix, MustBe0 - Résidence Philippe le Hardi – 125 Rue d’Oran
Aalborg East, Aalborg Municipality, Region of Northern Jutland, Denmark
Oslo, Verksbyen
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityBarcelona, Santa Coloma de GramenetBarcelona, SEILAB & Energy SmartLabIzmir, District of KarşıyakaIstanbul, Kadikoy district, CaferagaUmeå, Ålidhem districtRoubaix, MustBe0 - Résidence Philippe le Hardi – 125 Rue d’OranAalborg East, Aalborg Municipality, Region of Northern Jutland, DenmarkOslo, Verksbyen
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnoyesyesyesnonoyes
PED relevant case studyyesnononononoyesyesno
PED Lab.nonoyesnonononoyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesnoyesyesyesyesyesyes
Annual energy surplusnoyesnoyesnonoyesnoyes
Energy communityyesnoyesnoyesnononono
Circularitynonononononononono
Air quality and urban comfortyesyesnoyesnonoyesnoyes
Electrificationyesnoyesnononononono
Net-zero energy costnononoyesnonononono
Net-zero emissionnonoyesnononononoyes
Self-sufficiency (energy autonomous)nonoyesnononononono
Maximise self-sufficiencynononoyesnononoyesno
Othernonoyesnononononono
Other (A1P004)Green IT
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseImplementation PhaseIn operationPlanning PhasePlanning PhasePlanning PhaseCompletedPlanning PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date01/201110/2201/2010/2201/2211/2207/18
A1P007: End Date
A1P007: End date02/201310/2512/2209/2501/2411/2508/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts
  • General statistical datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • GIS open datasets
A1P009: OtherOther
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • Alpagut, B., Lopez Romo, A., Hernández, P., Tabanoğlu, O., & Hermoso Martinez, N. (2021). A GIS-Based Multicriteria Assessment for Identification of Positive Energy Districts Boundary in Cities. Energies, 14(22), 7517.
    • Umeå Energi
      A1P011: Geographic coordinates
      X Coordinate (longitude):23.8145882.162.127.11004929.0263195268751720.26303.165110.00710.986173354432992
      Y Coordinate (latitude):38.07734941.3941.338.49605440.9884139524746163.825850.693757.04102859.22429716642046
      A1P012: Country
      A1P012: CountryGreeceSpainSpainTurkeyTurkeySwedenFranceDenmarkNorway
      A1P013: City
      A1P013: CityMunicipality of KifissiaBarcelonaBarcelona and TarragonaİzmirIstanbulUmeåRoubaixAalborgFredrikstad
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).CsaCsaCsaCsaCsbDfbCfbDfbCfb
      A1P015: District boundary
      A1P015: District boundaryVirtualGeographicVirtualGeographicGeographicGeographicOtherVirtualGeographic
      OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodPEB
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:PrivatePublicPrivateMixedPublicPrivatePublicPrivate
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Single OwnerSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerSingle OwnerMultiple OwnersSingle Owner
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED160211312
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]215421027951160524200014423550
      A1P020: Total ground area
      A1P020: Total ground area [m²]32600115172752000250031308000
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area000301100
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estatenonononononoyesnoyes
      A1P022a: Add the value in EUR if available [EUR]0
      A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernonononononononono
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnonononononononono
      A1P022d: Add the value in EUR if available [EUR]
      A1P022e: Financing - PUBLIC - National fundingnonononononononono
      A1P022e: Add the value in EUR if available [EUR]
      A1P022f: Financing - PUBLIC - Regional fundingnonononononoyesnono
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingnonononononoyesnono
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernonononononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUnoyesnoyesyesnoyesnono
      A1P022i: Add the value in EUR if available [EUR]5039031193355
      A1P022j: Financing - RESEARCH FUNDING - Nationalnononoyesnononoyesno
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: OtherRetrofitted through various subsidies
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Positive externalities
      • Job creation,
      • Boosting local and sustainable production
      • Positive externalities,
      • Boosting local and sustainable production
      • Job creation,
      • Positive externalities,
      • Other
      • Positive externalities,
      • Boosting local businesses,
      • Boosting local and sustainable production
      A1P023: OtherBoosting new investors to the area, - Increasing the touristic value of area and urban mobility at the area, - Increasing the regional value (housing price, etc.), - Providing economic advantages by switching to positive energy production
      A1P024: More comments:
      A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.The building comprises 32 homes. The refurbishment complies with EnergieSprong specifications. This implies a performance of E=0 over 25 years.The total development consists of more than 1500 dwellings, a kindergarten, a school, and commercial buildings. Two of the residential blocks are included as demonstration projects in syn.ikia. The two blocks have 20 dwellings in each and are 6 stories high.
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]3.6
      Contact person for general enquiries
      A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaJaume SalomDr. Jaume Salom, Dra. Cristina CorcheroOzlem SenyolMr. Dogan UNERIGireesh NairJulien HolgardKristian OlesenTonje Healey Trulsrud
      A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamIRECIRECKarsiyaka MunicipalityMunicipality of KadikoyUmea MunicipalityVilogiaAalborg UniversityNorwegian University of Science and technology (NTNU)
      A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesMunicipality / Public BodiesOtherResearch Center / UniversityResearch Center / University
      A1P028: OtherSocial Housing Company
      A1P029: Emailgiavasoglou@kifissia.grjsalom@irec.catJsalom@irec.catozlemkocaer2@gmail.comdogan.uneri@kadikoy.bel.trgireesh.nair@umu.sejulien.holgard@vilogia.frKristian@plan.aau.dktonje.h.trulsrud@ntnu.no
      Contact person for other special topics
      A1P030: NameStavros Zapantis - vice mayorJoan Estrada AliberasHasan Burak CavkaMrs. Damla MUHCU YILMAZJulien HolgardAlex Søgaard Moreno
      A1P031: Emailstavros.zapantis@gmail.comj_estrada@gencat.cathasancavka@iyte.edu.trdamla.muhcu@kadikoy.bel.trjulien.holgard@vilogia.frasm@aalborg.dk
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • Urban comfort (pollution, heat island, noise level etc.)
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production
      • Energy efficiency,
      • Energy production,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Indoor air quality,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Indoor air quality
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fields- Integrated energy design process of both active and passive elements - Multicriteria analysis of energy system, environmental variables, indoor comfort and economic parameters - Energy modelling - Predictive control to optimize performance within the neighbourhoodEnergy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)Methods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.Simulation tools: City Energy Analyst and PolysunStakeholder engagement, expert energy system analysis, future scenariosEnergy efficiency: energy-efficient buildings that comply with the Norwegian Passive House standard. Energy Flexibility: sharing of PV energy between the dwellings Energy production: BIPV on the roof and facades, and a ground source heat pump for thermal energy. E-mobility: EV charging Urban comfort: a large green park in the neighbourhood with a small lake and recreational areas Digital technologies: Smart Home Systems for lighting, heating and ventilation Indoor air quality: balanced ventilation
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000YesYesNoNoNoYes
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceNoYesYesNoYesYesNoNo
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoYesNoNoNoNoNo
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculation– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhMobility is not included in the calculations.Large combined industrial, residential, and commercial area with complex flows of in- and outgoing traffic.
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]3.8620.942180.16
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]1.2260.1001480.053
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesyesyesyesyesyesyesnoyes
      A2P011: PV - specify production in GWh/annum [GWh/annum]0.051.0280.510.2490.18
      A2P011: Windnononononononoyesno
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydrononononononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnonononononononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnonononononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnonononononononono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernoyesnononononoyesno
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalnonononononononono
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalnonononoyesnononono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.08
      A2P012: Biomass_heatnonononononononono
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: Waste heat+HPnononononononoyesno
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]300
      A2P012: Biomass_peat_heatnonononononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnonononononononono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnonononononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernonononononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notes-Rooftop PV 39.1 kWp -4 pipe air-to-water heat pump to cover heating and coolingTwo scenarios are conducted regarding Kadikoy PED energy generation. For the second scenario, just 0.53GWh/annum PV production is proposed.Very little wind production currently exists in the area. The electricity production of the waste incineration plant will be included at a later date. Aalborg East is partly a remarkable area for hosting a Portland cement factory that accounts for a substantial share of Denmark’s total CO2 emissions. In turn, it also provides waste heat to the district heating grid for all of Aalborg city and some of the smaller towns that are connected to the same DH grid.
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]0.0335.0880.746.10.084620
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]0.0300.490.11399
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]000
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnonoyesyesnonononono
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnonononononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnonononononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernononononononoyesno
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]300
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnononoyesyesnononono
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.707-0.26
      A2P018: Windnonononononononono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydrononononononononono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnonononononononono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnonononononononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnonononononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernonononononononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnonononononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnonononononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnononononoyesnonono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnononononoyesnonono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnonononononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnonononononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnonononononononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernonononononononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary0001.4540311173975-2.26923076923080000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]-6.035
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & SecurityPersonal Safety
      A2P022: HealthCarbon Dioxide (CO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levelsHealthy community + Indoor Evironmental Quality (indoor air quality, thermal comfort, lighting and visual comfort)
      A2P022: Education
      A2P022: MobilitySustainable mobility
      A2P022: EnergyNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissionsEnergyEnergy and environmental performance (non-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/ self-consumption, net energy/net power. peak delivered(peak exported power, connection capacity credit, total greenhouse gas emissions
      A2P022: Water
      A2P022: Economic development: Investment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost ComparisonEconomic Performance: capital costs, operational costs, overall performance
      A2P022: Housing and Community: Access to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousnessdemopraphic composiiton, diverse community, social cohesion access to amenities, access to services, afordability of energy, affordability of shousing, living conditions, universal design, energy consciousness
      A2P022: Waste
      A2P022: OtherSmartness and Flexibility
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsnoyesyesyesyesyesyesyesyes
      A2P023: Solar thermal collectorsnonononoyesnonoyesno
      A2P023: Wind Turbinesnonononononononono
      A2P023: Geothermal energy systemnonononononononoyes
      A2P023: Waste heat recoverynononononononoyesno
      A2P023: Waste to energynononononononoyesno
      A2P023: Polygenerationnonononononononono
      A2P023: Co-generationnonononononononono
      A2P023: Heat Pumpnoyesnoyesyesnonoyesyes
      A2P023: Hydrogennonononononononono
      A2P023: Hydropower plantnonononononononono
      A2P023: Biomassnononononononoyesno
      A2P023: Biogasnonononononononono
      A2P023: Other
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)nonoyesnonoyesnonoyes
      A2P024: Energy management systemnoyesyesnonononoyesyes
      A2P024: Demand-side managementnoyesnononoyesnoyesyes
      A2P024: Smart electricity gridnonoyesnonononoyesno
      A2P024: Thermal Storagenononononononoyesno
      A2P024: Electric Storagenonoyesnonononoyesno
      A2P024: District Heating and Coolingnononononononoyesno
      A2P024: Smart metering and demand-responsive control systemsnonononononoyesyesyes
      A2P024: P2P – buildingsnonononononononono
      A2P024: OtherDistrict Heating
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnononoyesnoyesyesyesno
      A2P025: Energy efficiency measures in historic buildingsnonononononononono
      A2P025: High-performance new buildingsnoyesnonononononoyes
      A2P025: Smart Public infrastructure (e.g. smart lighting)nonononononononono
      A2P025: Urban data platformsnonononononononono
      A2P025: Mobile applications for citizensnonononononononono
      A2P025: Building services (HVAC & Lighting)noyesyesyesnonononoyes
      A2P025: Smart irrigationnonononononononono
      A2P025: Digital tracking for waste disposalnonononononononono
      A2P025: Smart surveillancenononononononoyesno
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)nonoyesnononononono
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonononononononono
      A2P026: e-Mobilitynonononononononono
      A2P026: Soft mobility infrastructures and last mile solutionsnonononononononono
      A2P026: Car-free areanonononononononono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notes
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesYesNoNoYesNoYesYes
      A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEnergy Performance CertificateNS3700 Norwegian Passive House
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoNoNoNoNo
      A2P029: If yes, please specify and/or enter notes
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC)
      • Smart cities strategies,
      • New development strategies
      • Energy master planning (SECAP, etc.),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Smart cities strategies,
      • Urban Renewal Strategies,
      • New development strategies,
      • National / international city networks addressing sustainable urban development and climate neutrality
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyKarşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.Reduction of 1018000 tons CO2 by 2030
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Electrification of Heating System based on Heat Pumps
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods
      • Electrification of Heating System based on Heat Pumps
      • Electrification of Heating System based on Heat Pumps,
      • Biogas
      A3P003: OtherNA
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and priorities-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.According to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.Decarbonize part of Aalborg city as a way of working incrementally towards being a zero-emission city.
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviour-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.- Stakeholder engagement; - Focus on implementing renewable energy production where possible; - Rretrofitting and energy optimization of existing buildings.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Demand management Living Lab
      • Innovative business models,
      • PPP models,
      • Circular economy models,
      • Demand management Living Lab,
      • Local trading
      • Life Cycle Cost,
      • Circular economy models
      A3P006: Other
      A3P007: Social models
      A3P007: Social models
      • Digital Inclusion,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Affordability
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Prevention of energy poverty,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement
      • Behavioural Change / End-users engagement,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Policy Forums,
      • Citizen/owner involvement in planning and maintenance
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Digital twinning and visual 3D models,
      • District Energy plans,
      • SECAP Updates
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates
      • District Energy plans
      • Strategic urban planning,
      • District Energy plans
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Energy Neutral,
      • Low Emission Zone,
      • Pollutants Reduction,
      • Greening strategies
      • Energy Neutral,
      • Low Emission Zone,
      • Pollutants Reduction
      • Energy Neutral,
      • Low Emission Zone,
      • Net zero carbon footprint
      • Carbon-free
      • Energy Neutral
      • Energy Neutral,
      • Net zero carbon footprint
      A3P009: Other
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.Current energy tariffs disincentivize both individual and collective PV systems – meaning energy communities are not economically feasible, housing associations and public buildings struggle with finding a secure RoI for solar panels, and citizens and local industry lack an incentive to install solar panels on their own
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionThe pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).Refurbishment of social housing. The refurbishment complies with EnergieSprong specifications. This implies a performance of E=0 over 25 years.The large scale provides interesting opportunities for both urban development and strategic energy planning; the diverse mix of buildings and functions also allow for interesting discussions regarding PEDs. Another interesting facet is that the district heating grid is almost fully supplied by waste heat.The case study follows the concept of syn.ikia with sustainable plus energy neighbourhoods (SPEN) and aims to reach a plus energy balance based on EPB uses on an annual basis.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentRefurbishment of social housingThe area has an interesting history of development and has recently undergone several urban improvements. This is coupled with a strong local network of business owners and other stakeholders, all with an interest in developing the area in the best way possible. This made for an interesting case from a planning perspective to investigate how this network would pick up on the concept of PED and whether they could see any potential utility in relation to their everyday experiences.The developers call their concept for Future Living, where the neighbourhood consist of highly energy-efficient buildings, is supplied with renewable energy onsite and includes green areas for well-being.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaUrban areaUrban areaUrban areaUrban areaSuburban areaSuburban areaSuburban area
      B1P004: Type of district
      B2P004: Type of district
      • New construction
      • Renovation
      • Renovation
      • Renovation
      • Renovation
      • Renovation
      • New construction
      B1P005: Case Study Context
      B1P005: Case Study Context
      • New Development
      • Retrofitting Area
      • Re-use / Transformation Area,
      • Retrofitting Area
      • Retrofitting Area
      • Retrofitting Area
      • Retrofitting Area
      • New Development
      B1P006: Year of construction
      B1P006: Year of construction20051958
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential23.37916.931
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P011: Population density before intervention
      B1P011: Population density before intervention000000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention000000000
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnoyesnoyesyesyesyesnono
      B1P013 - Residential: Specify the sqm [m²]102795
      B1P013: Officenonononoyesnononono
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynonononononononoyes
      B1P013 - Industry and Utility: Specify the sqm [m²]whole site was used for idustry and excavation
      B1P013: Commercialnonononoyesnononono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnonononononononono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasnonononononononono
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalnonononononononono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnonononononononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernonononoyesnononono
      B1P013 - Other: Specify the sqm [m²]Cultural Center, Sports Center / Total building and land use data of neigborhood 13,878 residential, 4,441 commercial using before intervention. For project area & 49 building area m2
      B1P014: Building and Land Use after intervention
      B1P014: Residentialnoyesnoyesyesyesyesnoyes
      B1P014 - Residential: Specify the sqm [m²]102795
      B1P014: Officenonononoyesnononono
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynonononononononono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnonononoyesnononono
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnonononononononono
      B1P014 - Institutional: Specify the sqm [m²]
      B1P014: Natural areasnonononononononono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnonononononononono
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnonononononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernonononoyesnononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility AggregationAn ongoing process and dialogue with local stakeholders to determine the future development of the area.
      B2P002: Installation life time
      B2P002: Installation life timeNo new installation will be made throughout the project. Rather the project will attempt to establish a local PED network with the aim of empowering the stakeholders to better engage with sustainable technologies.
      B2P003: Scale of action
      B2P003: ScaleVirtualDistrict
      B2P004: Operator of the installation
      B2P004: Operator of the installationIRECKristian Olesen
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materialsReplication is primarily focused on the establishment of a local network with an interest in and understanding of PED.
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Strategic,
      • Private
      • Civic
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabResearch center/UniversityResearch center/University
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private
      B2P009: Other
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Efficiency measures,
      • Information and Communication Technologies (ICT)
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Monitoring and evaluation infrastructure,
      • Tools for prototyping and modelling,
      • Tools, spaces, events for testing and validation
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Equipment
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Environmental
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholders
      B2P019: Available tools
      B2P019: Available tools
      • Energy modelling
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important
      C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: Storage systems and E-mobility market penetration1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P001: Decreasing costs of innovative materials4 - Important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P001: The ability to predict Multiple Benefits1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
      C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
      C1P001: Social acceptance (top-down)5 - Very important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
      C1P001: Availability of RES on site (Local RES)1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need4 - Important1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
      C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
      C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
      C1P002: Economic growth need2 - Slightly important1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
      C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
      C1P002: Energy autonomy/independence5 - Very important1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P003: Lack of public participation3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
      C1P003:Long and complex procedures for authorization of project activities5 - Very important1 - Unimportant5 - Very important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
      C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant3 - Moderately important5 - Very important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
      C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
      C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
      C1P005: Regulatory instability3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P005: Non-effective regulations4 - Important1 - Unimportant2 - Slightly important5 - Very important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
      C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant4 - Important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P005: Insufficient or insecure financial incentives4 - Important1 - Unimportant5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P005: Shortage of proven and tested solutions and examples1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
      C1P007: Deficient planning3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
      C1P007: Lack of well-defined process4 - Important1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
      C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Grid congestion, grid instability4 - Important1 - Unimportant5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia4 - Important1 - Unimportant4 - Important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
      C1P008: Lack of values and interest in energy optimization measurements5 - Very important1 - Unimportant5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
      C1P008: Low acceptance of new projects and technologies5 - Very important1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Difficulty of finding and engaging relevant actors5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
      C1P008: Lack of trust beyond social network4 - Important1 - Unimportant3 - Moderately important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Rebound effect4 - Important1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
      C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
      C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant5 - Very important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
      C1P009: Lack of awareness among authorities1 - Unimportant2 - Slightly important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P009: High costs of design, material, construction, and installation1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P010: Insufficient external financial support and funding for project activities1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P010: Economic crisis1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Risk and uncertainty1 - Unimportant5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important
      C1P010: Lack of consolidated and tested business models1 - Unimportant5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P010: Limited access to capital and cost disincentives1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
      C1P011: Energy price distortion1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
      C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Financial/Funding
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Analyst, ICT and Big Data
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Business process management
      • None
      C1P012: Urban Services providers
      • Planning/leading,
      • Design/demand aggregation
      C1P012: Real Estate developers
      • None
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Design/Construction companies
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: End‐users/Occupants/Energy Citizens
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Social/Civil Society/NGOs
      • Planning/leading,
      • Design/demand aggregation
      C1P012: Industry/SME/eCommerce
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Other
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)