Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Uncompare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Uncompare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Bologna, Pilastro-Roveri district
Groningen, PED North
Oslo, Verksbyen
Oulu, Kaukovainio
Roubaix, MustBe0 - Résidence Philippe le Hardi – 125 Rue d’Oran
Kladno, Sletiště (Sport Area), PED Winter Stadium
Barcelona, SEILAB & Energy SmartLab
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityBologna, Pilastro-Roveri districtGroningen, PED NorthOslo, VerksbyenOulu, KaukovainioRoubaix, MustBe0 - Résidence Philippe le Hardi – 125 Rue d’OranKladno, Sletiště (Sport Area), PED Winter StadiumBarcelona, SEILAB & Energy SmartLab
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononoyesyesnonono
PED relevant case studyyesyesnononoyesyesno
PED Lab.nonoyesnonononoyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyesyesno
Annual energy surplusnonoyesyesnoyesyesno
Energy communityyesyesyesnononoyesyes
Circularitynonoyesnoyesnonono
Air quality and urban comfortyesnonoyesnoyesnono
Electrificationyesnononoyesnoyesyes
Net-zero energy costnononononononono
Net-zero emissionnonoyesyesnononoyes
Self-sufficiency (energy autonomous)nononononononoyes
Maximise self-sufficiencynononononononono
Othernononononononoyes
Other (A1P004)Green IT
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseImplementation PhaseImplementation PhaseIn operationCompletedPlanning PhaseIn operation
A1P006: Start Date
A1P006: Start date09/1912/1807/1801/22202201/2011
A1P007: End Date
A1P007: End date10/2312/2308/2401/2402/2013
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Open data city platform – different dashboards,
  • General statistical datasets
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190,
    • Barroco Fontes Cunha F., Carani C., Nucci C.A., Castro C., Santana Silva M., Andrade Torres E. (2021) Transitioning to a low carbon society through energy communities: Lessons learned from Brazil and Italy, ENERGY RESEARCH & SOCIAL SCIENCE, 2021, 75, 1-19.,
    • GRETA Project, Pilastro-Roveri case study. Available at: https://projectgreta.eu/case-study/renewable-energy-district/
    • TNO, Hanze, RUG,
    • Ped noord book
      A1P011: Geographic coordinates
      X Coordinate (longitude):23.81458811.3973236.53512110.98617335443299225.5175950840935073.165114.092962.1
      Y Coordinate (latitude):38.07734944.50710653.23484659.2242971664204664.9928809817313250.693750.1371541.3
      A1P012: Country
      A1P012: CountryGreeceItalyNetherlandsNorwayFinlandFranceCzech RepublicSpain
      A1P013: City
      A1P013: CityMunicipality of KifissiaBolognaGroningenFredrikstadOuluRoubaixKladnoBarcelona and Tarragona
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).CsaCfaCfaCfbDfcCfbCfbCsa
      A1P015: District boundary
      A1P015: District boundaryVirtualGeographicFunctionalGeographicOtherGeographicVirtual
      OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodRegional (close to virtual)PEBV1* (ca 8 buildings)
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:MixedMixedPrivateMixedPrivateMixedPublic
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerSingle OwnerSingle OwnerMultiple OwnersSingle Owner
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED1962726180
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]1.013550197001442
      A1P020: Total ground area
      A1P020: Total ground area [m²]780000017.132600002500
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area00000100
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estatenonoyesyesyesyesyesno
      A1P022a: Add the value in EUR if available [EUR]0
      A1P022b: Financing - PRIVATE - ESCO schemenonononononoyesno
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernonoyesnonononono
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnonononononoyesno
      A1P022d: Add the value in EUR if available [EUR]
      A1P022e: Financing - PUBLIC - National fundingnoyesyesnonononono
      A1P022e: Add the value in EUR if available [EUR]
      A1P022f: Financing - PUBLIC - Regional fundingnoyesnononoyesnono
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingnoyesyesnoyesyesyesno
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernononononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUnoyesyesnoyesyesyesno
      A1P022i: Add the value in EUR if available [EUR]
      A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononoyesno
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnoyesnononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: OtherRetrofitted through various subsidies
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Job creation,
      • Positive externalities,
      • Boosting local businesses
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Positive externalities,
      • Boosting local and sustainable production
      • Job creation,
      • Positive externalities
      • Job creation,
      • Boosting local and sustainable production
      A1P023: OtherDeveloping and demonstrating new solutions
      A1P024: More comments:
      A1P024: More comments:The Pilastro-Roveri area is a large peri-urban district in the northeast of the city of Bologna (about 650 hectares). In particular, the northern area is mainly characterised by the residential sector of Rione Pilastro, a significant complex of social housing built in the 1960s in response to the housing emergency due to migrations from southern Italy and nowadays satisfying more global migrations. The southern area is instead characterised by the presence of the production district called Roveri. The area appears relevant for the research as it has several evolution potentials towards a climate-neutral district. In particular some key factors are interesting: - the presence of one of the largest photovoltaic parks in Europe on the roofs of CAAB, characterised by a production of 11,350,000 Kw/h of primary energy; - the presence of companies attentive to the issues of climate change and energy, able to act as facilitators for the area. This is the case of FIVE, a leader in the production of electric bicycles, whose plant is the first nZEB (nearly Zero Energy Building) productive building in the city; - the high presence of industrial buildings of different sizes needing a reduction in energy consumption; - the presence of obsolete, sometimes in decay, and of general highly energy-intensive buildings in the Pilastro area, accompanied by spread phenomena of energy poverty; - the presence of spaces that could be converted (e.g. unused warehouses, unexploited green areas, etc.); - the presence of an active community, characterised by numerous associations, but also by social challenges linked to multiple vulnerabilities; - the presence of local actors interested in the development of the area (including the Municipality, the University, Confindustria, ENEA, Confartigianato, etc.). Two main research projects are actually ongoing in the area, applying solutions towards energy improvement and transition strategies to guide the area towards climate neutrality: - GECO - Green Energy Community, funded by EIT Climate-KIC and active since 2019, aims to trigger a virtuous path of energy sharing between companies and citizens through the creation of an energy community. - GRETA - Green Energy Transition Actions, funded by the H2020 programme, aims to understand drivers and barriers on the involvement of citizens in the energy transition processes, by formulating Community Transition Pathways and Energy Citizenship Contracts. [from: Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190]The total development consists of more than 1500 dwellings, a kindergarten, a school, and commercial buildings. Two of the residential blocks are included as demonstration projects in syn.ikia. The two blocks have 20 dwellings in each and are 6 stories high.The building comprises 32 homes. The refurbishment complies with EnergieSprong specifications. This implies a performance of E=0 over 25 years.Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]53.6
      Contact person for general enquiries
      A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaProf. Danila LongoJasper Tonen, Elisabeth KoopsTonje Healey TrulsrudSamuli RinneJulien HolgardDavid ŠkorňaDr. Jaume Salom, Dra. Cristina Corchero
      A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamUniversity of Bologna - Architecture DepartmentMunicipality of GroningenNorwegian University of Science and technology (NTNU)City of OuluVilogiaMěsto KladnoIREC
      A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesOtherMunicipality / Public BodiesResearch Center / University
      A1P028: OtherSocial Housing Company
      A1P029: Emailgiavasoglou@kifissia.grJasper.tonen@groningen.nltonje.h.trulsrud@ntnu.nosamuli.rinne@ouka.fijulien.holgard@vilogia.frdavid.skorna@mestokladno.czJsalom@irec.cat
      Contact person for other special topics
      A1P030: NameStavros Zapantis - vice mayorSamuli RinneJulien HolgardMichal Kuzmič
      A1P031: Emailstavros.zapantis@gmail.comsamuli.rinne@ouka.fijulien.holgard@vilogia.frmichal.kuzmic@cvut.cz
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Waste management
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Waste management
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Water use,
      • Indoor air quality
      • Energy efficiency,
      • Energy production,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Indoor air quality,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax incentives (110%, façade bonus, eco-bonus, sismabonus, renovation bonus, etc.); - several activities - such as Workshops, Webinars, Roundtables, Urban Trekking, etc…- are encouraged in the area to deepen knowledge and raise awareness on energy issues among urban stakeholders (householders, occupants, workers, etc..); - reduction in energy consumption also through every day energy saving actions. The spread of energy poverty phenomena in the area is considered urgent both for the medium-low-income population living in Pilastro and for small and medium-sized enterprises placed in Roveri; - Project for a One-stop-shop to guide residents and enterprises towards more conscious energy behaviours (planned in Bologna SECAP). Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; - presence of a waste to energy plant connected to the district heating system; - presence of a large PV plant in the CAAB area - 11,350,000 Kw/h Energy flexibility: - testing energy community and collective self-consumption feasibility in Pilastro area through an active citizens involvement process; - testing energy community feasibility among SMEs in Roveri industrial area; - testing the potential of complementary energy consumption profiles between residential area (Pilastro) and industrial area (Roveri). Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviors; - Blog Pilastro as a tool to inform about the main activities and events ongoing in the area; E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services recovery (in fact during Covid-19 in the area Mobike service was suspended) and implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2); - Microclimatic simulationEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsEnergy efficiency: energy-efficient buildings that comply with the Norwegian Passive House standard. Energy Flexibility: sharing of PV energy between the dwellings Energy production: BIPV on the roof and facades, and a ground source heat pump for thermal energy. E-mobility: EV charging Urban comfort: a large green park in the neighbourhood with a small lake and recreational areas Digital technologies: Smart Home Systems for lighting, heating and ventilation Indoor air quality: balanced ventilationDifferent kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.Trnsys, PV modelling tools, CADEnergy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000YesNoYesNoNoNo
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceNoNoNoNoYesYesYes
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoNoNoYes
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.Not included. However, there is a charging place for a shared EV in one building.Not yet included.– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.30.162.11.4
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.330.0530.20.3
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesyesnoyesyesyesyesyes
      A2P011: PV - specify production in GWh/annum [GWh/annum]0.180.11.1
      A2P011: Windnononononononono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydronononononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnononononononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnononononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnononononononono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernononononononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalnonoyesnonononono
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalnoyesyesnonononono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_heatnoyesyesnonononono
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
      A2P012: Waste heat+HPnonoyesnoyesnoyesno
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.21.7
      A2P012: Biomass_peat_heatnononononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnonoyesnonononono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnononononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernononononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centersHeat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)Waste heat from cooling the ice rink.
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]2.30.0842.1
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]0.11
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnononononononoyes
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnononononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnononononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernononononononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnonononoyesnonono
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
      A2P018: Windnonononoyesnonono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydrononononoyesnonono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnonononoyesnonono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnonononoyesnonono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnononononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernononononononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnononononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnononononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnonononoyesnonono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
      A2P019: Waste heat+HPnononononononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnononononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnononononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnononononononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernononononononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary00003.2857142857143000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]-6.0350-104
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & SecurityPersonal Safety
      A2P022: HealthHealthy community + Indoor Evironmental Quality (indoor air quality, thermal comfort, lighting and visual comfort)Encouraging a healthy lifestyle
      A2P022: Education
      A2P022: MobilitySustainable mobilityModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV charging
      A2P022: EnergyEnergy and environmental performance (non-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/ self-consumption, net energy/net power. peak delivered(peak exported power, connection capacity credit, total greenhouse gas emissionsFinal energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reductionEnergy demand (heating and hot water), Energy demand (cooling), Cooling demand, Distributin losses, PV production, RES production, OER, Primafry Non-renewable energy balance, AMR, HMR, CO2 balance
      A2P022: Water
      A2P022: Economic developmentEconomic Performance: capital costs, operational costs, overall performanceTotal investments, Payback time, Economic value of savingsInvestment cost, Caputal cost, Operation cost, payback period, NPV, cummulated cash flow, savings, Life cycle, ROI, SROI
      A2P022: Housing and Communitydemopraphic composiiton, diverse community, social cohesion access to amenities, access to services, afordability of energy, affordability of shousing, living conditions, universal design, energy consciousnessDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy poverty
      A2P022: WasteRecycling rate
      A2P022: OtherSmartness and FlexibilitySmart Cities strategies, Quality of open data
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsnoyesyesyesyesyesyesyes
      A2P023: Solar thermal collectorsnoyesyesnonononono
      A2P023: Wind Turbinesnononononononono
      A2P023: Geothermal energy systemnoyesyesyesnononono
      A2P023: Waste heat recoverynonoyesnoyesnoyesno
      A2P023: Waste to energynoyesyesnonononono
      A2P023: Polygenerationnononononononono
      A2P023: Co-generationnoyesnonoyesnonono
      A2P023: Heat Pumpnoyesyesyesyesnoyesno
      A2P023: Hydrogennononononononono
      A2P023: Hydropower plantnononononononono
      A2P023: Biomassnonononoyesnonono
      A2P023: Biogasnononononononono
      A2P023: Other
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesyesyesnoyesyes
      A2P024: Energy management systemnonoyesyesyesnoyesyes
      A2P024: Demand-side managementnonoyesyesnonoyesno
      A2P024: Smart electricity gridnononononononoyes
      A2P024: Thermal Storagenonoyesnoyesnonono
      A2P024: Electric Storagenoyesyesnonononoyes
      A2P024: District Heating and Coolingnoyesyesnoyesnoyesno
      A2P024: Smart metering and demand-responsive control systemsnonoyesyesnoyesyesno
      A2P024: P2P – buildingsnononononononono
      A2P024: Other
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnoyesnonoyesyesyesno
      A2P025: Energy efficiency measures in historic buildingsnonoyesnonononono
      A2P025: High-performance new buildingsnoyesyesyesyesnonono
      A2P025: Smart Public infrastructure (e.g. smart lighting)noyesyesnonononono
      A2P025: Urban data platformsnonoyesnoyesnoyesno
      A2P025: Mobile applications for citizensnoyesnononononono
      A2P025: Building services (HVAC & Lighting)noyesnoyesyesnoyesyes
      A2P025: Smart irrigationnononononononono
      A2P025: Digital tracking for waste disposalnoyesnononononono
      A2P025: Smart surveillancenoyesnononononono
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)noyesnonoyesnonoyes
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesnonoyesnonono
      A2P026: e-Mobilitynoyesyesnoyesnonono
      A2P026: Soft mobility infrastructures and last mile solutionsnoyesnonoyesnonono
      A2P026: Car-free areanononononononono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notes
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesYesYesYesYesNoYes
      A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEnergy Performance Certificate for each dwellingEnergy Performance CertificateNS3700 Norwegian Passive HouseThe obligatory buildijng energy classificationNational standards apply.
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoNoNoNo
      A2P029: If yes, please specify and/or enter notes
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC)
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • New development strategies
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyCity level targets Sustainable Urban Mobility Plan (PUMS) - 2019 | Targets: - by 2030 440,000 daily trips will no longer be made by car but on foot, by bike or by public transport; - by 2030 12% of vehicles will be electric; Sustainable Energy and Climate Action Plan (SECAP) - 2021 | Targets: - by 2025 deep renovation of 3% per year of residential homes (insulation of building envelopes and adoption of heat pump heating system); - by 2030 reduction of electricity consumption at least of 20% compared to 2018; - by 2030 100% coverage of electricity consumption for municipal buildings; - by 2030 increase public green areas by at least 10% Urban General Plan (PUG) - 2021 | Targets: - by 2030 net zero land consumption; National level targets Integrated National Energy and Climate Plan - 2020 | Targets: - by 2030 reduction of 43% for primary energy consumption, with respect to the reference 2007 scenario. - by 2030 increase of 30% of energy production from renewable sources; - by 2025 energy generation for electricity independent from the use of coal;Carbon neutrality by 2035Carbon neutrality 2050
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods,
      • Biogas
      • Electrification of Heating System based on Heat Pumps
      • Electrification of Heating System based on Heat Pumps
      A3P003: Other
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and prioritiesBologna needs to reach the climate neutrality proceeding by ‘part’ of the city. Pilastro-Roveri is a promising district due to the following reasons: - some buildings need to be renovated both to increase the energy performance, the seismic behaviour, spaces liveability and comfort; - Pilastro is a residential area with the presence of a high percentage of vulnerable inhabitants affected by energy poverty phenomenon. This situation needs to be prioritized; - Pilastro is characterized by the presence of large underused green spaces that can represent a valuable resource for social cohesion and for heat island phenomenon mitigation; - Roveri is an industrial area where some small-medium enterprises are investing in order to improve their facilities and to efficiency their production cycle; - Roveri and Pilastro areas present complementary energy consumption curves throughout the day/week with a high potential for energy sharing and flexibility.Developing and demonstrating solutions for carbon neutrality-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviourBologna SECAP, as well as the participation to the 100 Climate-Neutral Cities, promotes the PED model as an enabling tool to foster city energy transition process. In Pilastro-Roveri district two main sustainable behaviours approaches can be identified: - bottom-up approach - some citizens are joining forces to create groups of energy self-consumption, in view of energy communities’ implementation and, at the same time, some companies have already undertaken some efficiency intervention on the production system by leveraging highly energy-efficient technologies; - top-down approach - GECO and GRETA are international ongoing projects on the area that promote innovation and energy transition with important fundings from the European Union, but with a particular focus on citizen engagement and participatory approach. Simultaneously, new and updated planning tools such as PUG, SECAP and SUMP identify in this part of Bologna city a key area to enable an ecological transition process holding together all relevant stakeholders - citizens, small-medium enterprises and Institutions. These two thrusts (bottom-up and top-down) need to be optimized in view of a participatory pathway towards the grounding of a Positive Energy District in Pilastro-Roveri.In Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.E. g. visualizing energy and water consumption-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Innovative business models,
      • PPP models,
      • Circular economy models,
      • Demand management Living Lab,
      • Existing incentives
      • Innovative business models,
      • Blockchain
      • Open data business models,
      • Innovative business models,
      • PPP models,
      • Life Cycle Cost,
      • Circular economy models
      • Innovative business models,
      • PPP models,
      • Existing incentives
      • Demand management Living Lab
      A3P006: Other
      A3P007: Social models
      A3P007: Social models
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Affordability,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Citizen Social Research,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Quality of Life,
      • Strategies towards social mix,
      • Affordability,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Behavioural Change / End-users engagement,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Affordability
      • Digital Inclusion,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • City Vision 2050,
      • SECAP Updates,
      • Building / district Certification
      • Strategic urban planning,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • City Vision 2050,
      • SECAP Updates
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Energy Neutral,
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Life Cycle approach,
      • Pollutants Reduction,
      • Greening strategies
      • Energy Neutral
      • Energy Neutral,
      • Net zero carbon footprint
      • Energy Neutral
      • Net zero carbon footprint
      • Energy Neutral,
      • Low Emission Zone,
      • Pollutants Reduction,
      • Greening strategies
      A3P009: Other
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspectsPEDs in Italy are meant as strategies towards climate-neutrality: at national/regional/local level a specific legislation on PEDs development is not yet available. However, the European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). Italy, starting from 2020, has transposed the Directives at national level (‘Milleproroghe’ decree then made effective by ‘Promotion of Renewable sources’ decree 199/2021). At regional level Emilia Romagna in May 2022 developed a law encouraging EC model diffusion (LR 5/2022 ‘Promotion and support of renewable energy communities and renewable energy self-consumers acting collectively’). Energy Community, according to Lindholm et al. 2021, can be considered as ‘a first implementation step towards PEDs.’At national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionPilastro-Roveri district can be considered as a PED-relevant area. Even though at the moment the area doesn’t meet annual energy positive balance, it addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.The case study follows the concept of syn.ikia with sustainable plus energy neighbourhoods (SPEN) and aims to reach a plus energy balance based on EPB uses on an annual basis.The original idea is that the area produces at least as much it consumes.Refurbishment of social housing. The refurbishment complies with EnergieSprong specifications. This implies a performance of E=0 over 25 years.Onsite Energy Ratio > 1
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentPilastro-Roveri district is not actually meant to become a PEDs. However, it can be considered as a PED-relevant case-study since a participatory transition pathway towards a more sustainable, efficient and resilient district is gaining ground, involving the main urban stakeholders. At the same time, the most recent city plan and policies (such as the city SECAPs - updated in 2021) are promoting PED model as a key strategy to guide Bologna towards climate neutrality by 2030.The developers call their concept for Future Living, where the neighbourhood consist of highly energy-efficient buildings, is supplied with renewable energy onsite and includes green areas for well-being.Developing systems towards carbon neutrality. Also urban renewal.Refurbishment of social housingStrategic, economic
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaUrban areaSuburban areaSuburban areaSuburban areaUrban area
      B1P004: Type of district
      B2P004: Type of district
      • Renovation
      • New construction
      • New construction,
      • Renovation
      • Renovation
      • New construction,
      • Renovation
      B1P005: Case Study Context
      B1P005: Case Study Context
      • Retrofitting Area
      • New Development
      • New Development,
      • Retrofitting Area
      • Retrofitting Area
      • New Development,
      • Retrofitting Area
      B1P006: Year of construction
      B1P006: Year of construction1958
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential3500
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential3500
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P011: Population density before intervention
      B1P011: Population density before intervention00000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention00000.058333333333333000
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnoyesnonoyesyesyesno
      B1P013 - Residential: Specify the sqm [m²]
      B1P013: Officenoyesnonononoyesno
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynoyesnoyesnononono
      B1P013 - Industry and Utility: Specify the sqm [m²]whole site was used for idustry and excavation
      B1P013: Commercialnoyesnonoyesnonono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnoyesnononononono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasnoyesnonoyesnonono
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalnoyesnonoyesnoyesno
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnoyesnononononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernononononononono
      B1P013 - Other: Specify the sqm [m²]
      B1P014: Building and Land Use after intervention
      B1P014: Residentialnoyesnoyesyesyesyesno
      B1P014 - Residential: Specify the sqm [m²]
      B1P014: Officenoyesnonononoyesno
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynoyesnononononono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnoyesnonoyesnonono
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnoyesnononononono
      B1P014 - Institutional: Specify the sqm [m²]
      B1P014: Natural areasnoyesnonoyesnonono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnoyesnonoyesnoyesno
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnoyesnononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernononononononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
      B2P002: Installation life time
      B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
      B2P003: Scale of action
      B2P003: ScaleDistrictVirtual
      B2P004: Operator of the installation
      B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.IREC
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Civic
      • Strategic,
      • Private
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabMunicipalityResearch center/University
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Other
      B2P009: Otherresearch companies, monitoring company, ict company
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Buildings,
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Waste management,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Social interactions,
      • Business models
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Efficiency measures,
      • Information and Communication Technologies (ICT)
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Tools for prototyping and modelling
      • Monitoring and evaluation infrastructure,
      • Tools for prototyping and modelling,
      • Tools, spaces, events for testing and validation
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Execution plan,
      • Available data,
      • Type of measured data,
      • Equipment,
      • Level of access
      • Equipment
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Social,
      • Economical / Financial
      • Energy,
      • Environmental
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholders
      B2P019: Available tools
      B2P019: Available tools
      • Energy modelling,
      • Social models,
      • Business and financial models
      • Energy modelling
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production5 - Very important4 - Important3 - Moderately important5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important4 - Important3 - Moderately important4 - Important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
      C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important5 - Very important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P001: Storage systems and E-mobility market penetration3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
      C1P001: Decreasing costs of innovative materials4 - Important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important
      C1P001: The ability to predict Multiple Benefits4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important4 - Important
      C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important4 - Important
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P001: Social acceptance (top-down)5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant
      C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
      C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important4 - Important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important5 - Very important
      C1P001: Availability of RES on site (Local RES)4 - Important4 - Important5 - Very important4 - Important1 - Unimportant4 - Important4 - Important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important5 - Very important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)Collaboration with the local partners
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need4 - Important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
      C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important3 - Moderately important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P002: Urban re-development of existing built environment3 - Moderately important5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important4 - Important
      C1P002: Economic growth need2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
      C1P002: Territorial and market attractiveness2 - Slightly important3 - Moderately important2 - Slightly important5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P002: Energy autonomy/independence5 - Very important4 - Important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important
      C1P002: Any other DRIVING FACTOR1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important
      C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
      C1P003: Lack of public participation3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
      C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important5 - Very important
      C1P003: Complicated and non-comprehensive public procurement4 - Important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P003: Fragmented and or complex ownership structure3 - Moderately important5 - Very important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important5 - Very important
      C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important5 - Very important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important4 - Important
      C1P003: Lack of internal capacities to support energy transition3 - Moderately important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important
      C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
      C1P003: Any other Administrative BARRIER (if any)Fragmented financial support; lack of experimental budget for complex projects, etc.
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
      C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important2 - Slightly important
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P004: Any other Political BARRIER (if any)Different priorities; overall problematic system od decentralization powers; non-fuctioning model of local development funding, etc.
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important4 - Important4 - Important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
      C1P005: Regulatory instability3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important
      C1P005: Non-effective regulations4 - Important4 - Important3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant4 - Important2 - Slightly important
      C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important
      C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important
      C1P005: Insufficient or insecure financial incentives4 - Important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important5 - Very important
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important4 - Important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P005: Shortage of proven and tested solutions and examples2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important4 - Important
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriers
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel4 - Important4 - Important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important5 - Very important
      C1P007: Deficient planning3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
      C1P007: Retrofitting work in dwellings in occupied state4 - Important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P007: Lack of well-defined process4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important
      C1P007: Inaccuracy in energy modelling and simulation4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
      C1P007: Lack/cost of computational scalability4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important
      C1P007: Grid congestion, grid instability4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
      C1P007: Negative effects of project intervention on the natural environment3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Difficult definition of system boundaries3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)Inadequate regulation towards energy transition
      C1P008: Social and Cultural barriers
      C1P008: Inertia4 - Important2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important4 - Important
      C1P008: Lack of values and interest in energy optimization measurements5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
      C1P008: Low acceptance of new projects and technologies5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important5 - Very important
      C1P008: Difficulty of finding and engaging relevant actors5 - Very important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
      C1P008: Lack of trust beyond social network4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
      C1P008: Rebound effect4 - Important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
      C1P008: Hostile or passive attitude towards environmentalism5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important
      C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
      C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important5 - Very important
      C1P009: Lack of awareness among authorities3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
      C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P009: High costs of design, material, construction, and installation4 - Important4 - Important4 - Important3 - Moderately important1 - Unimportant5 - Very important5 - Very important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
      C1P010: Insufficient external financial support and funding for project activities4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important5 - Very important
      C1P010: Economic crisis4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
      C1P010: Risk and uncertainty5 - Very important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant4 - Important5 - Very important
      C1P010: Lack of consolidated and tested business models5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important
      C1P010: Limited access to capital and cost disincentives3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives5 - Very important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important4 - Important
      C1P011: Energy price distortion5 - Very important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important5 - Very important
      C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      C1P012: Financial/Funding
      • Design/demand aggregation,
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Analyst, ICT and Big Data
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      C1P012: Business process management
      • None
      • Planning/leading
      • Planning/leading,
      • Monitoring/operation/management
      C1P012: Urban Services providers
      • Planning/leading,
      • Design/demand aggregation
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading
      • Design/demand aggregation
      C1P012: Real Estate developers
      • None
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation
      • Design/demand aggregation
      C1P012: Design/Construction companies
      • Construction/implementation
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      • Design/demand aggregation
      C1P012: End‐users/Occupants/Energy Citizens
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • None
      • Monitoring/operation/management
      • Design/demand aggregation
      C1P012: Social/Civil Society/NGOs
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation
      • Monitoring/operation/management
      C1P012: Industry/SME/eCommerce
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Other
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)