Filters:
NameProjectTypeCompare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Uncompare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Uncompare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Uncompare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Uncompare
Vienna, Am Kempelenpark PED Case Study Uncompare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Barcelona, SEILAB & Energy SmartLab
Tartu, Annelinn
Luxembourg, Betzdorf
Munich, Harthof district
Lund, Brunnshög district
Vienna, Am Kempelenpark
Dietenbach, Freiburg im Breisgau
Groningen, PED North
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityBarcelona, SEILAB & Energy SmartLabTartu, AnnelinnLuxembourg, BetzdorfMunich, Harthof districtLund, Brunnshög districtVienna, Am KempelenparkDietenbach, Freiburg im BreisgauGroningen, PED North
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonononoyesyesyesnono
PED relevant case studyyesnoyesyesnononoyesno
PED Lab.noyesnonononononoyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynonoyesyesyesyesyesyesyes
Annual energy surplusnononoyesyesyesyesnoyes
Energy communityyesyesyesyesyesyesnonoyes
Circularitynononoyesnoyesnonoyes
Air quality and urban comfortyesnonoyesnoyesnonono
Electrificationyesyesyesyesnoyesnonono
Net-zero energy costnonononononononono
Net-zero emissionnoyesnononoyesnonoyes
Self-sufficiency (energy autonomous)noyesnonononononono
Maximise self-sufficiencynonononononononono
Othernoyesnononoyesnoyesno
Other (A1P004)Green ITHolistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030;Sustainable neighbourhood
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseIn operationPlanning PhaseImplementation PhaseImplementation PhaseIn operationPlanning PhasePlanning PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date01/201112/2306/2301/23201507/1601/1212/18
A1P007: End Date
A1P007: End date02/201311/2604/2612/27204002/2512/23
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
A1P009: OtherGIS open dataset is under construction
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
      • TNO, Hanze, RUG,
      • Ped noord book
      A1P011: Geographic coordinates
      X Coordinate (longitude):23.8145882.126.74816.36160211.56962505994760413.23246940076959916.3952927.7954766.535121
      Y Coordinate (latitude):38.07734941.358.370849.68277448.2043626127515255.7198979220719348.17359848.00615753.234846
      A1P012: Country
      A1P012: CountryGreeceSpainEstoniaLuxembourgGermanySwedenAustriaGermanyNetherlands
      A1P013: City
      A1P013: CityMunicipality of KifissiaBarcelona and TarragonaTartuBetzdorfMunichLundViennaFreiburg im BreisgauGroningen
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).CsaCsaDfbCfbCfbDfbCwbCfbCfa
      A1P015: District boundary
      A1P015: District boundaryVirtualVirtualGeographicGeographicGeographicGeographicGeographicFunctional
      OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:PublicPublicPublicMixedPublicPrivatePublicMixed
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerSingle OwnerMultiple Owners
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED02412620067
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]173.820615000001.01
      A1P020: Total ground area
      A1P020: Total ground area [m²]5400000560150000017.132
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area000001000
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estatenononononoyesnonoyes
      A1P022a: Add the value in EUR if available [EUR]99999999
      A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernonononononononoyes
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnononononoyesnonono
      A1P022d: Add the value in EUR if available [EUR]1000000
      A1P022e: Financing - PUBLIC - National fundingnonoyesnonoyesnonoyes
      A1P022e: Add the value in EUR if available [EUR]30000000
      A1P022f: Financing - PUBLIC - Regional fundingnononononoyesnonono
      A1P022f: Add the value in EUR if available [EUR]30000000
      A1P022g: Financing - PUBLIC - Municipal fundingnonononoyesyesnonoyes
      A1P022g: Add the value in EUR if available [EUR]180000000
      A1P022h: Financing - PUBLIC - Othernononoyesnonononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUnonononoyesyesnonoyes
      A1P022i: Add the value in EUR if available [EUR]2000000
      A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononononono
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: Other
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Job creation,
      • Boosting local and sustainable production
      • Other
      • Other
      • Boosting local businesses,
      • Boosting local and sustainable production
      A1P023: OtherWorld class sustainable living and research environments
      A1P024: More comments:
      A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
      Contact person for general enquiries
      A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaDr. Jaume Salom, Dra. Cristina CorcheroDr. Gonçalo Homem De Almeida Rodriguez CorreiaJulien BertucciStefan SynekMarkus PaulssonGerhard HoferChristoph GollnerJasper Tonen, Elisabeth Koops
      A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamIRECDelft University of TechnologySNHBMCity of MunichCity of Lunde7 energy innovation & engineeringFFGMunicipality of Groningen
      A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesMunicipality / Public BodiesSME / IndustryOtherMunicipality / Public Bodies
      A1P028: OtherAndreas Bärnreuther
      A1P029: Emailgiavasoglou@kifissia.grJsalom@irec.catg.correia@tudelft.nljulien.bertucci@snhbm.lustefan.synek@muenchen.demarkus.paulsson@lund.segerhard.hofer@e-sieben.atchristoph.gollner@ffg.atJasper.tonen@groningen.nl
      Contact person for other special topics
      A1P030: NameStavros Zapantis - vice mayorQiaochu FanStefan SynekEva Dalman
      A1P031: Emailstavros.zapantis@gmail.comq.fan-1@tudelft.nlstefan.synek@muenchen.deeva.dalman@lund.se
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Water use,
      • Indoor air quality,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Water use,
      • Waste management,
      • Construction materials,
      • Other
      • Energy efficiency,
      • Energy production,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Waste management
      • Energy efficiency,
      • Energy production,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Waste management
      A2P001: OtherWalkability and biking
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)LundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions.Energy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streams
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoNo
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceYesNoYesYesNo
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceYesNoNoYesNoNo
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculation– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhToday electrically charged vehicles are included in the energy balance. In the future also other fuels should be included.Mobility, till now, is not included in the energy model.
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]252.3
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]300.33
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesyesnonoyesyesnonono
      A2P011: PV - specify production in GWh/annum [GWh/annum]
      A2P011: Windnononononoyesnonono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydrononononononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnonononononononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnonononononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnonononononononono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernonononononononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalnonononononononoyes
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalnonononoyesnononoyes
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_heatnonononononononoyes
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
      A2P012: Waste heat+HPnononononoyesnonoyes
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]200
      A2P012: Biomass_peat_heatnonononononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnonononononononoyes
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnonononononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernonononononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centers
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnoyesnonoyesnononono
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnonononononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnonononoyesnononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernonononononononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnonononoyesyesnonono
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
      A2P018: Windnonononoyesyesnonono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydronononononoyesnonono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnonononoyesyesnonono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnonononoyesnononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnonononoyesnononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernonononononononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnonononoyesnononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnonononononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnonononoyesnononono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnonononoyesnononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnonononononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnonononononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnonononononononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernonononononononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary000000000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & Security
      A2P022: Health
      A2P022: Education
      A2P022: MobilityImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districtsMaximum 1/3 transport with car
      A2P022: EnergyTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stabilityEnergyLocal energy production 150% of energy need
      A2P022: Water
      A2P022: Economic developmentDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resilience
      A2P022: Housing and Community50% rental apartments and 50% owner apartments
      A2P022: Waste
      A2P022: Other
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsnoyesyesnoyesyesnoyesyes
      A2P023: Solar thermal collectorsnononononoyesnoyesyes
      A2P023: Wind Turbinesnonoyesnonoyesnonono
      A2P023: Geothermal energy systemnonononoyesyesnonoyes
      A2P023: Waste heat recoverynononononoyesnonoyes
      A2P023: Waste to energynonononononononoyes
      A2P023: Polygenerationnononononoyesnonono
      A2P023: Co-generationnonononononononono
      A2P023: Heat Pumpnonononoyesyesnoyesyes
      A2P023: Hydrogennononononoyesnonono
      A2P023: Hydropower plantnonononononononono
      A2P023: Biomassnonononononononono
      A2P023: Biogasnonononononononono
      A2P023: Other
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)noyesnoyesyesyesnonoyes
      A2P024: Energy management systemnoyesyesyesyesyesnonoyes
      A2P024: Demand-side managementnonoyesnonoyesnonoyes
      A2P024: Smart electricity gridnoyesyesnonoyesnonono
      A2P024: Thermal Storagenonononoyesyesnoyesyes
      A2P024: Electric Storagenoyesyesyesyesyesnonoyes
      A2P024: District Heating and Coolingnonononoyesyesnonoyes
      A2P024: Smart metering and demand-responsive control systemsnonononoyesyesnonoyes
      A2P024: P2P – buildingsnonononononononono
      A2P024: Other
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnonoyesnoyesnononono
      A2P025: Energy efficiency measures in historic buildingsnonononononononoyes
      A2P025: High-performance new buildingsnononoyesnoyesnonoyes
      A2P025: Smart Public infrastructure (e.g. smart lighting)nonoyesnonoyesnonoyes
      A2P025: Urban data platformsnonoyesnoyesyesnonoyes
      A2P025: Mobile applications for citizensnonononononononono
      A2P025: Building services (HVAC & Lighting)noyesnoyesnoyesnonono
      A2P025: Smart irrigationnonononononononono
      A2P025: Digital tracking for waste disposalnononononoyesnonono
      A2P025: Smart surveillancenonononononononono
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)noyesyesnononononono
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonoyesnonoyesnoyesno
      A2P026: e-Mobilitynonoyesyesyesyesnonoyes
      A2P026: Soft mobility infrastructures and last mile solutionsnonononoyesyesnonono
      A2P026: Car-free areanononononoyesnonono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notesWalkability
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesYesYesYesYes
      A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingMiljöbyggnad silver/guldEnergy Performance Certificate
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesYesNo
      A2P029: If yes, please specify and/or enter notes
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC)
      • Smart cities strategies,
      • New development strategies
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Energy master planning (SECAP, etc.),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • National / international city networks addressing sustainable urban development and climate neutrality
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyCity wide climate neutrality by 2035, city administration climate neutrality by 2030City strategy: Net climate neutrality 2030
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Electrification of Heating System based on Heat Pumps
      • Electrification of Heating System based on Heat Pumps
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods,
      • Biogas
      A3P003: OtherNo gas grid in Brunnshög
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and priorities-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.Local waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars.
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviour-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.Need to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection.In Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Demand management Living Lab
      • Innovative business models,
      • Local trading,
      • Existing incentives
      • Open data business models
      • PPP models,
      • Other
      • Innovative business models,
      • Blockchain
      A3P006: OtherAttractivenes
      A3P007: Social models
      A3P007: Social models
      • Digital Inclusion,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Social incentives,
      • Prevention of energy poverty,
      • Digital Inclusion
      • Affordability
      • Strategies towards (local) community-building,
      • Behavioural Change / End-users engagement,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Quality of Life,
      • Strategies towards social mix
      • Co-creation / Citizen engagement strategies,
      • Citizen Social Research
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Citizen Social Research,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • District Energy plans
      • Building / district Certification
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Energy Neutral,
      • Low Emission Zone,
      • Pollutants Reduction,
      • Greening strategies
      • Energy Neutral,
      • Low Emission Zone,
      • Nature Based Solutions (NBS)
      • Net zero carbon footprint,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Nature Based Solutions (NBS)
      • Energy Neutral
      • Energy Neutral
      A3P009: Other
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.decision by the Munich City Council in 2019 to become climate neutral by 2030 / 2035The municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions.At national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionMunich as demonstrator together with Lyon in ASCEND projectVision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentspeed and scale of PEDsThe aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaRuralUrban areaUrban areaUrban areaSuburban area
      B1P004: Type of district
      B2P004: Type of district
      • New construction,
      • Renovation
      • Renovation
      • New construction
      • Renovation
      • New construction
      B1P005: Case Study Context
      B1P005: Case Study Context
      • New Development
      • Retrofitting Area
      • New Development
      • Re-use / Transformation Area,
      • New Development
      • New Development
      B1P006: Year of construction
      B1P006: Year of construction
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential60
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential618000
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential2000
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential22000
      B1P011: Population density before intervention
      B1P011: Population density before intervention000000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention00000.0107142857142860.026666666666667000
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnonononoyesnononono
      B1P013 - Residential: Specify the sqm [m²]
      B1P013: Officenononononoyesyesnono
      B1P013 - Office: Specify the sqm [m²]60000
      B1P013: Industry and Utilitynonononononononono
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialnonononononoyesnono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnonononononononono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasnononononoyesnoyesno
      B1P013 - Natural areas: Specify the sqm [m²]2000000
      B1P013: Recreationalnonononononononono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnonononononononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernononononoyesnonono
      B1P013 - Other: Specify the sqm [m²]Outdoor parking: 100000
      B1P014: Building and Land Use after intervention
      B1P014: Residentialnonononoyesyesyesyesno
      B1P014 - Residential: Specify the sqm [m²]600000
      B1P014: Officenononononoyesyesnono
      B1P014 - Office: Specify the sqm [m²]650000
      B1P014: Industry and Utilitynonononononononono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnonononononoyesnono
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnononononoyesnoyesno
      B1P014 - Institutional: Specify the sqm [m²]50000
      B1P014: Natural areasnononononononoyesno
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnononononoyesnonono
      B1P014 - Recreational: Specify the sqm [m²]400000
      B1P014: Dismissed areasnonononononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernononononononoyesno
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility AggregationGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
      B2P002: Installation life time
      B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
      B2P003: Scale of action
      B2P003: ScaleVirtualDistrictDistrict
      B2P004: Operator of the installation
      B2P004: Operator of the installationIRECThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Strategic,
      • Private
      • Civic
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabResearch center/UniversityMunicipality
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Other
      B2P009: Otherresearch companies, monitoring company, ict company
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Efficiency measures,
      • Information and Communication Technologies (ICT)
      • Buildings,
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Waste management,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Social interactions,
      • Business models
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Monitoring and evaluation infrastructure,
      • Tools for prototyping and modelling,
      • Tools, spaces, events for testing and validation
      • Tools for prototyping and modelling
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Equipment
      • Execution plan,
      • Available data,
      • Type of measured data,
      • Equipment,
      • Level of access
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Environmental
      • Energy,
      • Social,
      • Economical / Financial
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholders
      B2P019: Available tools
      B2P019: Available tools
      • Energy modelling
      • Energy modelling,
      • Social models,
      • Business and financial models
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important3 - Moderately important5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P001: Storage systems and E-mobility market penetration5 - Very important5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
      C1P001: Decreasing costs of innovative materials4 - Important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important
      C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
      C1P001: The ability to predict Multiple Benefits4 - Important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P001: The ability to predict the distribution of benefits and impacts4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important
      C1P001: Social acceptance (top-down)5 - Very important1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need4 - Important4 - Important4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important
      C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P002: Economic growth need2 - Slightly important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important
      C1P002: Energy autonomy/independence5 - Very important5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
      C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
      C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P003: Lack of public participation3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
      C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
      C1P003: Complicated and non-comprehensive public procurement4 - Important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P003: Fragmented and or complex ownership structure3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
      C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
      C1P003: Lack of internal capacities to support energy transition3 - Moderately important4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P005: Regulatory instability3 - Moderately important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P005: Non-effective regulations4 - Important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P005: Building code and land-use planning hindering innovative technologies4 - Important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P005: Insufficient or insecure financial incentives4 - Important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
      C1P005: Shortage of proven and tested solutions and examples4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important
      C1P005: Any other Legal and Regulatory BARRIER4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriers?
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel4 - Important5 - Very important4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P007: Deficient planning3 - Moderately important5 - Very important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
      C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
      C1P007: Lack of well-defined process4 - Important4 - Important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P007: Inaccuracy in energy modelling and simulation4 - Important5 - Very important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
      C1P007: Lack/cost of computational scalability4 - Important4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Grid congestion, grid instability4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
      C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia4 - Important4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
      C1P008: Lack of values and interest in energy optimization measurements5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P008: Low acceptance of new projects and technologies5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important
      C1P008: Difficulty of finding and engaging relevant actors5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important
      C1P008: Lack of trust beyond social network4 - Important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
      C1P008: Rebound effect4 - Important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
      C1P008: Hostile or passive attitude towards environmentalism5 - Very important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important
      C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
      C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts5 - Very important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P009: Lack of awareness among authorities2 - Slightly important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
      C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P009: High costs of design, material, construction, and installation5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
      C1P010: Insufficient external financial support and funding for project activities5 - Very important4 - Important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P010: Economic crisis4 - Important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Risk and uncertainty5 - Very important4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P010: Lack of consolidated and tested business models5 - Very important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P010: Limited access to capital and cost disincentives5 - Very important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives4 - Important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
      C1P011: Energy price distortion5 - Very important5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
      C1P011: Energy market concentration, gatekeeper actors (DSOs)5 - Very important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • None
      • Planning/leading,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Research & Innovation
      • None
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Financial/Funding
      • None
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Analyst, ICT and Big Data
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Business process management
      • Design/demand aggregation
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading
      C1P012: Urban Services providers
      • Planning/leading
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Real Estate developers
      • Planning/leading
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation
      C1P012: Design/Construction companies
      • Design/demand aggregation
      • Design/demand aggregation,
      • Construction/implementation
      • Construction/implementation
      C1P012: End‐users/Occupants/Energy Citizens
      • None
      • Monitoring/operation/management
      • None
      C1P012: Social/Civil Society/NGOs
      • Monitoring/operation/management
      • None
      • Planning/leading,
      • Design/demand aggregation
      C1P012: Industry/SME/eCommerce
      • Planning/leading
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Other
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)