Filters:
NameProjectTypeCompare
The city of Carcavelos, Portugal CSP – Cascais Smart Pole PED Relevant Case Study Uncompare
Verdal Kommune, Trøndelag PERSIST PED Case Study Compare
Cluj-Napoca, UTCN Dormitories PERSIST PED Lab Compare
Alba Iulia, Social blocks, str. Marcus Aurelius PERSIST PED Lab Compare
Leeuwarden/de Zwette PED Lab Compare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Uncompare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Uncompare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Uncompare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Barcelona, SEILAB & Energy SmartLab
Utrecht, Kanaleneiland
Malmö, Stadium area (Stadionområdet)
Zaragoza, Actur
Leon, Former Sugar Factory district
The city of Carcavelos, Portugal
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityBarcelona, SEILAB & Energy SmartLabUtrecht, KanaleneilandMalmö, Stadium area (Stadionområdet)Zaragoza, ActurLeon, Former Sugar Factory districtThe city of Carcavelos, Portugal
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononoyesnoyesno
PED relevant case studyyesnoyesnoyesnoyes
PED Lab.noyesnonononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynonoyesyesyesnoyes
Annual energy surplusnononoyesyesyesno
Energy communityyesyesyesnononoyes
Circularitynonononononoyes
Air quality and urban comfortyesnononononoyes
Electrificationyesyesyesnoyesnono
Net-zero energy costnonononononono
Net-zero emissionnoyesnonoyesnono
Self-sufficiency (energy autonomous)noyesnonononono
Maximise self-sufficiencynononononoyesno
Othernoyesnonononono
Other (A1P004)Green IT
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseIn operationPlanning PhasePlanning PhasePlanning PhasePlanning PhaseCompleted
A1P006: Start Date
A1P006: Start date01/201111/2301/2401/2312/1804/20
A1P007: End Date
A1P007: End date02/201311/2612/3312/2304/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
        •  https://makingcity.eu/wp-content/uploads/2021/12/MakingCity_D4_3_Analysis_of_FWC_candidate_areas_to_become_a_PED_Final.pdf.
        A1P011: Geographic coordinates
        X Coordinate (longitude):23.8145882.15.087512.989836-0.8891-5.584795-9.323445
        Y Coordinate (latitude):38.07734941.352.065355.58400441.648842.59339138.684036
        A1P012: Country
        A1P012: CountryGreeceSpainNetherlandsSwedenSpainSpainPortugal
        A1P013: City
        A1P013: CityMunicipality of KifissiaBarcelona and TarragonaUtrecht (Kanaleneiland)MalmöZaragozaLeonCarcavelos
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CsaCsaCfbDfbBSkCsbCsa
        A1P015: District boundary
        A1P015: District boundaryVirtualVirtualGeographicGeographicGeographicGeographicGeographic
        OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:PublicPrivateMixedPublicMixedMixed
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple Owners
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED062160
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]16.0690080.000
        A1P020: Total ground area
        A1P020: Total ground area [m²]291000052170073.14569330.000
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area0000000
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenonononononono
        A1P022a: Add the value in EUR if available [EUR]
        A1P022b: Financing - PRIVATE - ESCO schemenonononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernonononononoyes
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnonononononono
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingnonoyesnononono
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingnonononononono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnononoyesnonono
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernonononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnononoyesnonono
        A1P022i: Add the value in EUR if available [EUR]
        A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: Other
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Job creation,
        • Boosting local and sustainable production
        • Positive externalities,
        • Boosting local businesses,
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products,
        • Other
        A1P023: Other- Economic savings on water consumption and electricity - Promoting the circular economy and carbon neutrality in waste - Business oportunities resulting from less carbon-intensive practices created by the project - Financial benefits from using renewable energy sources –creation of Energy Communities
        A1P024: More comments:
        A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.The Cascais Smart Pole by NOVA SBE was implemented in a multifunctional area that integrates housing, commerce, facilities, and public spaces, acquiring a local identity through sociocultural interaction between residents, students, and visitors/tourists , also covering an area of 4.2ha of green spaces. Located in the Municipality of Cascais, a leading municipality in defining a Municipal Roadmap for Carbon Neutrality, the Cascais Smart Pole by NOVA SBE led the generation of change-makers, influencing people and all stakeholders on the path of innovation combined with carbon neutrality. The Cascais Smart Pole is a living lab pilot project that aims to create a carbon-neutral, sustainable urban environment by integrating innovative technological solutions and community engagement. The concept of the project is based on a physical space and a virtual space, providing testing ground for experimentation in domains of decarbonization, renewable energy, and climate resilience. Planned continuation of the project is establishing a Renewable Energy Community (REC) to promote local clean energy production and shared consumption. This initiative will support the Cascais 2030 Sustainable Energy Strategy and the Cascais 2050 Carbon Neutrality Roadmap, engaging residents and businesses in sustainable practices to drive collective impact. A Renewable Energy Community (CER) will be created from the Cascais Smart Pole, which will encourage residents, companies and NOVA SBE to jointly invest in the installation of photovoltaic panels, to share the consumption of the clean energy produced. The panels will be installed on the roof of NOVA SBE and surrounding residential buildings, and all interested parties will be able to participate in the CER by investing, purchasing energy or donating their roof or panels to the CER. The aim is for residents to not only save on their electricity bills, but also obtain social and financial returns and contribute to the decarbonization effort in that geographic area. Main objectives/activities and outcomes of the living lab include: 1. Roadmap for Carbon Neutrality: The project developed a comprehensive inventory of 2019 greenhouse gas emissions and modeled the path to carbon neutrality by 2050. Strategic options for decarbonization were outlined, with a focus on mobility and energy efficiency. The efforts resulted in a 65-ton CO₂ reduction during the project's duration. 2. Smart Pole Platform: A participatory digital platform was created, providing data on project activities and allowing public engagement through submissions of ideas. It also included tools like a carbon footprint calculator. The platform gained over 13,000 visits, fostering collaboration among stakeholders. 3. Smart Pole Community: Community-focused initiatives included renewable energy workshops and microgreen cultivation activities. Events engaged locals and students, with over 17 activities conducted, such as street fairs and environmental workshops. The Microgreen Community distributed kits to promote urban agriculture. 4. Urban Mobility: Sustainable transport behaviors were promoted via a mobile app (MobiCascais), tracking CO₂ emissions saved. Due to delays, some planned features were revised, but the app incorporated mobility KPIs and avoided emissions data. A campaign highlighted the importance of shared mobility. 5. Energy Efficiency: Smart energy management systems optimized HVAC and lighting, integrating occupancy data for predictive efficiency. Indoor air quality monitoring systems were deployed, and smart energy counters were installed in classrooms. The project saved energy while addressing privacy concerns. 6. Circular Economy in Waste: The initiative collected 19.4 tons of used cooking oil, surpassing the goal by 43%, producing biodiesel for municipal vehicles. A gamified "Pay-As-You-Throw" system incentivized recycling, reducing waste contamination rates. Smart bins monitored waste levels, improving collection efficiency. 7. Green Living: Urban green spaces were transformed with native plants and smart irrigation systems, reducing water consumption and enhancing biodiversity. Over 7,000 trees and shrubs were planted, and lawns were replaced with water-efficient meadows. Smart systems optimized water use and tracked conservation progress. 8. Smart Pole Market: Originally intended as a carbon credit marketplace, this activity shifted focus to creating a carbon footprint calculator for businesses. The tool provides actionable insights for companies to reduce their emissions. Workshops introduced the software to local entrepreneurs. 9. Smart Pole World: Communication efforts included public awareness campaigns, workshops, and art initiatives like "Sustent’Arte." Over 20 events engaged stakeholders, promoting the project's goals. The communication strategy emphasized local impact and scalability to inspire other municipalities. Main areas/axes of the living lab: Community, Water, Buildings, Energy, Green Spaces, Mobility, Circular Economy
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
        Contact person for general enquiries
        A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaDr. Jaume Salom, Dra. Cristina CorcheroDr. Gonçalo Homem De Almeida Rodriguez CorreiaChristoffer OriniusClara LorenteBegoña Gonzalo OrdenMariana Sardinha
        A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamIRECDelft University of TechnologyThe City of MalmöCIRCEMunicipality of LeonGet2C Climate change, Energy, Carbon markets, Climate finance, Sustainable development
        A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityOtherSME / Industry
        A1P028: OtherMunicipality of Leon - ILRUVMariana Sardinha
        A1P029: Emailgiavasoglou@kifissia.grJsalom@irec.catg.correia@tudelft.nlChristoffer.orinius@malmo.seCLORENTEM@FCIRCE.COMbegona.gonzalo@aytoleon.esmariana.sardinha@get2c.com
        Contact person for other special topics
        A1P030: NameStavros Zapantis - vice mayorQiaochu FanMonica Prada CorralMariana SardinhaMariana Sardinha
        A1P031: Emailstavros.zapantis@gmail.comq.fan-1@tudelft.nlMonica.Prada@ilruv.esmariana.sardinha@get2c.com
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Water use,
        • Waste management,
        • Indoor air quality
        A2P001: Other1. Roadmap for Carbon Neutrality • Tools: GHG emissions inventory tools and carbon modeling methodologies, with support from Get2C. • Methods: Data collection through surveys, energy use assessments, and direct engagement with stakeholders; scenario modeling for emissions reduction up to 2050. • Strategies: Alignment with the Cascais Municipal Roadmap for Carbon Neutrality and development of decarbonization pathways based on predictive modeling. 2. Smart Pole Platform • Tools: An interactive digital platform integrated with real-time data sharing and public participation features. Methods: Benchmarking similar IoT-enabled platforms and creating user-friendly UX/UI designs. • Methods: Benchmarking of similar platforms and custom UX/UI design to track project-specific KPIs like CO₂ emissions and participation rates. • Strategies: Enabling transparency and collaboration by integrating APIs for data collection and feedback loops for community input. 3. Smart Pole Community • Tools: Social media platforms and engagement tools for organizing events and activities. • Methods: Conducting workshops, technical visits, and environmental events to foster collaboration among residents, students, and stakeholders. • Strategies: Promoting sustainable habits through participatory activities such as microgreen cultivation and educational campaigns. 4. Urban Mobility • Tools: The Cascais Smart Pole platform mobility dashboard for monitoring metrics like avoided CO₂ emissions, trips taken, and kilometers traveled. • Methods: Integration of mobility data with platform analytics; promotion of shared transport options like bikes and scooters. • Strategies: Public awareness campaigns and gamification to encourage sustainable mobility behaviors and reduce reliance on private vehicles. 5. Energy Efficiency • Tools: Cisco CMX platform for zonal mapping, IAQ monitoring sensors for CO₂ and temperature tracking, intelligent energy systems, including occupancy-based HVAC and lighting controls managed via the Building Management System (BMS) by Veolia. • Methods: Integration of Wi-Fi-based occupancy data with HVAC and lighting systems for predictive energy adjustments. • Strategies: Real-time energy optimization algorithms and data-driven decision-making to improve efficiency and reduce emissions 6. Circular Economy in Waste • Tools: Smart waste bins with monitoring systems and a gamified "Pay-As-You-Throw" (PAYT) system using Citypoints by PRIO. • Methods: Collection of used cooking oils for biodiesel production, incentivized through gamification. • Strategies: Promoting recycling behaviors via smart monitoring and awareness campaigns while integrating circular economy practices 7. Water Use • Tools: Installation of water refill stations integrated with a digital mapping system for real-time updates on station locations. • Methods: Community campaigns promoting tap water use and workshops highlighting the environmental benefits of refill infrastructure. • Strategies: Educating residents and visitors about sustainable water use practices and providing accessible refill infrastructure. 8. Green Living • Tools: Smart irrigation systems, including various controllers, including Hunter's ACC2-75D-P controller and the MySOLEM app, with geolocation-based control and sensors for soil moisture, leaks, and water usage. Transformation of urban green spaces with native plants, planting trees. • Methods: Conversion of traditional lawns to rainfed meadows; installation of localized irrigation equipment to minimize water consumption. • Strategies: Expansion of smart irrigation systems to additional areas, enhancing biodiversity, and involving the community in sustainable practices 9. Smart Pole Market • Tools: A carbon footprint calculator – a software by Delta Soluções designed to assist businesses in assessing and reducing their emissions. • Methods: Workshops and municipal partnerships to encourage software adoption among local companies. • Strategies: Supporting businesses in carbon reporting and neutrality planning through accessible tools and guidance. 10. Smart Pole World • Tools: Cascais Smart Pole World website, multimedia campaigns, educational programs and Sustent’Arte artistic initiatives. • Methods: Stakeholder engagement through events like GreenFest and knowledge transfer via workshops and summer schools. • Strategies: Leveraging digital communication and interactive events to raise awareness and inspire community-driven sustainability efforts.
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)Energy efficiency: - buildings energy retrofit Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; Energy flexibility: - testing share energy solutions (public-private stakeholders) Digital technologies - smart city platform - smart energy management E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation.
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceYesNoYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceYesNoYes
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculation– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhMobility was an integral part of the CO₂ inventory for the Cascais Smart Pole project, assessed through surveys capturing commuting behaviors among the NOVA SBE community. Emission factors for various transport modes, including private cars, public transport, and active mobility, were calculated to quantify contributions to greenhouse gas emissions. Additionally, the MobiCascais app tracked avoided CO₂ emissions from shifts to sustainable mobility options like shared bicycles and public transport. This data was integrated into the project’s digital platform, providing key metrics such as trips taken, kilometers traveled, and tons of CO₂ avoided, supporting the roadmap toward carbon neutrality.
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]11.93.49
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]9.20.57
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesyesnononoyesyes
        A2P011: PV - specify production in GWh/annum [GWh/annum]1.24
        A2P011: Windnonononononono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydronononononoyesno
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]1.28
        A2P011: Biomass_elnonononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnonononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnononononoyesno
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.28
        A2P011: Othernonononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnonononononono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnonononononoyes
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatnonononononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPnonononononono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_peat_heatnonononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnononononoyesno
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnonononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernononononoyesno
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notesThe photovoltaic panels installed as part of the Cascais Smart Pole project are currently set up within a self-consumption production unit (UPAC). While a contract was signed to allow sharing surplus production with nearby facilities, such as a school and a paddle tennis court, this setup remains in preliminary stages and has not yet been fully implemented. This arrangement is intended to eventually support shared energy use as part of the ongoing Renewable Energy Community (REC) initiative. Additionally, the project incorporates the production of biodiesel from collected used cooking oil (UCO), which is processed and utilized in municipal vehicles.
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnoyesnonononono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnonononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnonononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernonononononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnonononononono
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
        A2P018: Windnonononononono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydrononononononono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnonononononono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnonononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnonononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernonononononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnonononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnonononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnonononononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnonononononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnonononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnonononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnonononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernonononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary0000000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Security
        A2P022: Health
        A2P022: Education
        A2P022: MobilityImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districts
        A2P022: EnergyTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stabilityyearly energy balance
        A2P022: Water
        A2P022: Economic developmentDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resilience
        A2P022: Housing and Community
        A2P022: Waste
        A2P022: Other
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsnoyesyesyesyesyesyes
        A2P023: Solar thermal collectorsnononononoyesno
        A2P023: Wind Turbinesnonoyesnononono
        A2P023: Geothermal energy systemnonononoyesnono
        A2P023: Waste heat recoverynononoyesnonono
        A2P023: Waste to energynonononononoyes
        A2P023: Polygenerationnonononononono
        A2P023: Co-generationnonononononono
        A2P023: Heat Pumpnonononoyesyesno
        A2P023: Hydrogennonononononono
        A2P023: Hydropower plantnononononoyesno
        A2P023: Biomassnonononononono
        A2P023: Biogasnonononononono
        A2P023: Other
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)noyesnononoyesyes
        A2P024: Energy management systemnoyesyesyesyesyesyes
        A2P024: Demand-side managementnononoyesnoyesno
        A2P024: Smart electricity gridnoyesyesnononono
        A2P024: Thermal Storagenonononononono
        A2P024: Electric Storagenoyesyesyesnonono
        A2P024: District Heating and Coolingnononoyesnonono
        A2P024: Smart metering and demand-responsive control systemsnononoyesnonoyes
        A2P024: P2P – buildingsnononononoyesno
        A2P024: Other
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnonoyesnonoyesno
        A2P025: Energy efficiency measures in historic buildingsnononononoyesno
        A2P025: High-performance new buildingsnononoyesnonono
        A2P025: Smart Public infrastructure (e.g. smart lighting)nonoyesnononono
        A2P025: Urban data platformsnonoyesnonoyesyes
        A2P025: Mobile applications for citizensnonononononoyes
        A2P025: Building services (HVAC & Lighting)noyesnonononoyes
        A2P025: Smart irrigationnonononononoyes
        A2P025: Digital tracking for waste disposalnonononononono
        A2P025: Smart surveillancenonononononono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)noyesyesnonoyesno
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonoyesnononoyes
        A2P026: e-Mobilitynonoyesnoyesyesno
        A2P026: Soft mobility infrastructures and last mile solutionsnononononoyesno
        A2P026: Car-free areanonononononono
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notes
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesYesYes
        A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEnergy Performance Certificate - in Spain it is mandatory in order to buy or rent a house or a dwelling)
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNo
        A2P029: If yes, please specify and/or enter notes
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC)
        • Smart cities strategies,
        • New development strategies
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.)
        • New development strategies
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyNational Roadmap for Carbon Neutrality 2050 (RNC2050): 1. GHG Emissions Reduction: 55% reduction by 2030 (from 2005 levels). 100% reduction by 2050. 2. Renewable Energy: 47% share of renewables in final energy consumption by 2030. 20% renewable energy in transport by 2030. 3. Energy Efficiency: 35% improvement in primary energy consumption by 2030. Cascais 2050 Municipal Roadmap for Carbon Neutrality: 1. Renewable Energy Production: Local Energy Communities: Initiated in 2022, Cascais aims to generate 213 GWh annually through photovoltaic installations (23% of town’s electricity consumption). 2. Waste Management: 152% increase in plastic recycling (2014-2022) 3. Electric Mobility: Adoption of 100% electric waste collection vehicles
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps
        • Hydrogen
        A3P003: Other
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and priorities-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.• Reduction of GHG Emissions and Decarbonization Pathways (renewable energy adoption, energy-efficient retrofitting, reducing individual vehicle use) • Infrastructure and Technological Development (sustainable mobility infrastructure - public transportation, EV charging stations, cycling networks; Green spaces adaptation to climate change – biodiversity planting, smart irrigation systems; Digital tools development - carbon footprint calculators, mobility information hubs to support decision-making and track progress) • Promotion of Circular Economy and Waste Management (biodiesel production from used cooking oil, community composting, home composting, waste sorting systems) • Community Engagement and Behavioral Change (renewable energy communities, sustainable/soft mobility practices, waste reduction behaviors, awareness and education, workshops, campaigns, events) • Stakeholder Collaboration (strengthen partnerships among local businesses, public authorities, educational institutions, and community members; shared ownership of initiatives through participatory planning and implementation) • Policy Integration and Planning (alignment with Cascais 2050 Roadmap, the National Roadmap for Carbon Neutrality, and European decarbonization strategies; share of best practices; set up of a legal framework for REC (Renewable energy Community in the area) • Monitoring and Scaling Successful Pilots (Establish robust monitoring systems for energy, water, and waste management; Replicate and expand pilot projects like smart irrigation, carbon footprint tools, and renewable energy communities to other areas)
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviour-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.Use of public transport, bicycles, and shared mobility options; using carbon footprint calculators to understand and reduce emissions; recycling and proper waste sorting, including biodiesel production from used cooking oil; adopting smart irrigation systems to conserve water in green spaces; engagement in community composting and home composting to reduce organic waste; preparedness for participation in Renewable Energy Communities (RECs) for shared renewable energy production; switching to energy-efficient technologies like LED lighting and A+ rated appliances; participation in events, workshops, and educational courses on sustainability and climate action.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Demand management Living Lab
        • Innovative business models,
        • Local trading,
        • Existing incentives
        • Innovative business models
        • Innovative business models,
        • Circular economy models,
        • Demand management Living Lab,
        • Existing incentives,
        • Other
        A3P006: OtherCollaborative energy models: Renewable Energy Communities (RECs)
        A3P007: Social models
        A3P007: Social models
        • Digital Inclusion,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Prevention of energy poverty,
        • Digital Inclusion
        • Strategies towards (local) community-building
        • Strategies towards (local) community-building,
        • Behavioural Change / End-users engagement,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Quality of Life,
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning,
        • District Energy plans
        • Strategic urban planning,
        • District Energy plans
        • Strategic urban planning,
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning,
        • District Energy plans,
        • City Vision 2050,
        • SECAP Updates
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral,
        • Low Emission Zone,
        • Pollutants Reduction,
        • Greening strategies
        • Energy Neutral,
        • Low Emission Zone,
        • Nature Based Solutions (NBS)
        • Energy Neutral
        • Net zero carbon footprint,
        • Pollutants Reduction,
        • Greening strategies,
        • Nature Based Solutions (NBS)
        A3P009: Other
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.compliance with Renewable Energy Communities (REC) regulations for energy sharing; •adherence to General Data Protection Regulation (GDPR) for data privacy in smart systems; •following EEA Grants public procurement rules for tendering and service hiring; •meeting urban mobility and transportation regulations for low-emission zones and EV infrastructure; •fulfilling waste management regulations for biodiesel production and organic waste processing
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionThe Cascais Smart Pole (CSP) is a relevant PED case study as it is a district-level project with high level of aspiration in terms of energy efficiency, energy flexibility and energy production. It employs core PED principles—energy production, efficiency, and sustainability—by integrating renewable energy, efficiency measures, community engagement, smart technologies, and scalable and replicable practices. Its outcomes align with the PED vision by fostering renewable energy, establishing Renewable Energy Communities, aiming for energy surplus, enhancing quality of life, and reducing environmental impacts.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentCSP aims to serve as a living lab that demonstrates innovative solutions for achieving carbon neutrality and addressing climate change. Living Lab not only reduces carbon emissions but also creates a blueprint for replicable and scalable solutions, addressing the urgent need for climate action while improving quality of life, enabling energy efficiency, renewable energy production, energy sharing through REC (to be established), and aligning with global decarbonization goals.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaUrban areaUrban areaUrban area
        B1P004: Type of district
        B2P004: Type of district
        • Renovation
        • New construction,
        • Renovation
        • New construction
        B1P005: Case Study Context
        B1P005: Case Study Context
        • Retrofitting Area
        • Re-use / Transformation Area,
        • Retrofitting Area,
        • Preservation Area
        • New Development,
        • Retrofitting Area
        B1P006: Year of construction
        B1P006: Year of construction2020
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential1662
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential1878
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential4925
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential6126
        B1P011: Population density before intervention
        B1P011: Population density before intervention00000020
        B1P012: Population density after intervention
        B1P012: Population density after intervention00000024.254545454545
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnononononoyesyes
        B1P013 - Residential: Specify the sqm [m²]
        B1P013: Officenonononononoyes
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynonononononono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnonononononoyes
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnonononononoyes
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasnonononononoyes
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnonononononoyes
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnonononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernononononoyesno
        B1P013 - Other: Specify the sqm [m²]
        B1P014: Building and Land Use after intervention
        B1P014: Residentialnononononoyesyes
        B1P014 - Residential: Specify the sqm [m²]
        B1P014: Officenonononononoyes
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynonononononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnonononononoyes
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnonononononoyes
        B1P014 - Institutional: Specify the sqm [m²]
        B1P014: Natural areasnonononononoyes
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnonononononoyes
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnonononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernononononoyesno
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
        B2P002: Installation life time
        B2P002: Installation life time
        B2P003: Scale of action
        B2P003: ScaleVirtual
        B2P004: Operator of the installation
        B2P004: Operator of the installationIREC
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?No
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Strategic,
        • Private
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabResearch center/University
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Demand-side management,
        • Energy storage,
        • Energy networks,
        • Efficiency measures,
        • Information and Communication Technologies (ICT)
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Monitoring and evaluation infrastructure,
        • Tools for prototyping and modelling,
        • Tools, spaces, events for testing and validation
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        • Equipment
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy,
        • Environmental
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        • Energy modelling
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important3 - Moderately important5 - Very important4 - Important2 - Slightly important1 - Unimportant5 - Very important
        C1P001: Storage systems and E-mobility market penetration5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Decreasing costs of innovative materials4 - Important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
        C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important
        C1P001: The ability to predict Multiple Benefits4 - Important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P001: The ability to predict the distribution of benefits and impacts4 - Important4 - Important4 - Important5 - Very important1 - Unimportant3 - Moderately important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important
        C1P001: Social acceptance (top-down)5 - Very important1 - Unimportant4 - Important4 - Important5 - Very important1 - Unimportant5 - Very important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important
        C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant4 - Important
        C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important4 - Important4 - Important3 - Moderately important4 - Important1 - Unimportant4 - Important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important5 - Very important5 - Very important2 - Slightly important4 - Important1 - Unimportant5 - Very important
        C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important5 - Very important5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need4 - Important4 - Important4 - Important2 - Slightly important5 - Very important1 - Unimportant4 - Important
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important4 - Important5 - Very important4 - Important1 - Unimportant4 - Important
        C1P002: Economic growth need2 - Slightly important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important4 - Important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important
        C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
        C1P002: Energy autonomy/independence5 - Very important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important4 - Important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
        C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant4 - Important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important
        C1P003: Lack of public participation3 - Moderately important2 - Slightly important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important3 - Moderately important4 - Important4 - Important1 - Unimportant4 - Important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P003: Complicated and non-comprehensive public procurement4 - Important3 - Moderately important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant4 - Important
        C1P003: Fragmented and or complex ownership structure3 - Moderately important5 - Very important2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant4 - Important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important4 - Important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
        C1P003: Lack of internal capacities to support energy transition3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P003: Any other Administrative BARRIER5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
        C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important2 - Slightly important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important5 - Very important5 - Very important5 - Very important2 - Slightly important1 - Unimportant4 - Important
        C1P005: Regulatory instability3 - Moderately important2 - Slightly important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P005: Non-effective regulations4 - Important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P005: Building code and land-use planning hindering innovative technologies4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P005: Insufficient or insecure financial incentives4 - Important5 - Very important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P005: Shortage of proven and tested solutions and examples4 - Important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P005: Any other Legal and Regulatory BARRIER4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriers
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Deficient planning3 - Moderately important5 - Very important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important
        C1P007: Lack of well-defined process4 - Important4 - Important4 - Important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important
        C1P007: Inaccuracy in energy modelling and simulation4 - Important5 - Very important4 - Important2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important
        C1P007: Lack/cost of computational scalability4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Grid congestion, grid instability4 - Important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P008: Lack of values and interest in energy optimization measurements5 - Very important5 - Very important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
        C1P008: Low acceptance of new projects and technologies5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P008: Difficulty of finding and engaging relevant actors5 - Very important5 - Very important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
        C1P008: Lack of trust beyond social network4 - Important3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
        C1P008: Rebound effect4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
        C1P008: Hostile or passive attitude towards environmentalism5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
        C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
        C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
        C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts5 - Very important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P009: Lack of awareness among authorities2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
        C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P009: High costs of design, material, construction, and installation5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant4 - Important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
        C1P010: Insufficient external financial support and funding for project activities5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Economic crisis4 - Important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P010: Risk and uncertainty5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
        C1P010: Lack of consolidated and tested business models5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
        C1P010: Limited access to capital and cost disincentives5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives4 - Important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
        C1P011: Energy price distortion5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P011: Energy market concentration, gatekeeper actors (DSOs)5 - Very important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        C1P012: Research & Innovation
        C1P012: Financial/Funding
        C1P012: Analyst, ICT and Big Data
        C1P012: Business process management
        C1P012: Urban Services providers
        C1P012: Real Estate developers
        C1P012: Design/Construction companies
        C1P012: End‐users/Occupants/Energy Citizens
        C1P012: Social/Civil Society/NGOs
        C1P012: Industry/SME/eCommerce
        C1P012: Other
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)