Name | Project | Type | Compare |
---|---|---|---|
Tartu, Estonia | V2G-QUESTS | PED Relevant Case Study | Compare |
Utrecht, the Netherlands (District of Kanaleneiland) | V2G-QUESTS | PED Relevant Case Study | Compare |
Aveiro, Portugal | V2G-QUESTS | PED Relevant Case Study | Compare |
Győr Geothermal District Heating Project | PED Relevant Case Study | Compare | |
Jacobs Borchs Gate, Drammen | PED Relevant Case Study | Compare | |
Dietenbach, Freiburg im Breisgau | PED Relevant Case Study | Compare | |
SmartEnCity, Lecce | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study | Compare |
STARDUST, Trento | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study / PED Lab | Compare |
Klimatkontrakt Hyllie, Malmö | PED Relevant Case Study | Compare | |
EnStadt:Pfaff, Kaiserslautern | PED Relevant Case Study / PED Lab | Compare | |
mySMARTlife, Helsinki | PED Relevant Case Study | Compare | |
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze | PED Relevant Case Study | Compare | |
Sinfonia, Bolzano | PED Relevant Case Study | Compare | |
Hunziker Areal, Zürich | PED Relevant Case Study | Compare | |
Hammarby Sjöstad 2.0, | PED Relevant Case Study | Compare | |
Sharing Cities, Milano | PED Relevant Case Study | Compare | |
District Heating Pozo Barredo, Mieres | PED Relevant Case Study | Compare | |
Cityfied (demo Linero), Lund | PED Relevant Case Study | Compare | |
Smart Otaniemi, Espoo | PED Relevant Case Study / PED Lab | Compare | |
Zukunftsquartier, Vienna | PED Case Study | Compare | |
Santa Chiara Open Lab, Trento | PED Case Study | Compare | |
Barrio La Pinada, Paterna | PED Case Study / PED Lab | Compare | |
Zero Village Bergen (ZVB) | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Võru +CityxChange | PED Case Study | Compare | |
NTNU Campus within the Knowledge Axis, Trondheim | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Furuset project, Oslo | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Laser Valley – Land of Lights | PED Case Study | Compare | |
Ydalir project | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
NyBy – Ny Flyplass (New City – New Airport) | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Fornebu, Bærum | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Fleuraye west, Carquefou | PED Case Study | Compare | |
Smart Energy Åland | PED Case Study | Compare | |
Romania, Alba Iulia PED | ASCEND – Accelerate poSitive Clean ENergy Districts | PED Case Study | Compare |
Romania, Alba Iulia PED | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Munich, Harthof district | PED Case Study | Compare | |
Lublin | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Bærum, Eiksveien 116 | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Findhorn, the Park | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Amsterdam, Buiksloterham PED | ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities | PED Case Study | Compare |
Schönbühel-Aggsbach, Schönbühel an der Donau | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Umeå, Ålidhem district | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Aalborg East | PED Relevant Case Study / PED Lab | Uncompare | |
Ankara, Çamlık District | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study / PED Relevant Case Study | Compare |
Trenčín | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Luxembourg, Betzdorf | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Vantaa, Aviapolis | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Vidin, Himik and Bononia | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Oslo, Verksbyen | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Uden, Loopkantstraat | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Relevant Case Study | Uncompare |
Zaragoza, Actur | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Relevant Case Study | Compare |
Aarhus, Brabrand | BIPED – Building Intelligent Positive Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Riga, Ķīpsala, RTU smart student city | ExPEDite – Enabling Positive Energy Districts through Digital Twins | PED Case Study | Compare |
Izmir, District of Karşıyaka | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Istanbul, Ozyegin University Campus | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Uncompare |
Espoo, Kera | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study / PED Relevant Case Study | Compare |
Borlänge, Rymdgatan’s Residential Portfolio | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Freiburg, Waldsee | PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district | PED Case Study | Compare |
Innsbruck, Campagne-Areal | PED Relevant Case Study | Compare | |
Graz, Reininghausgründe | PED Case Study | Compare | |
Stor-Elvdal, Campus Evenstad | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Relevant Case Study | Compare |
Oulu, Kaukovainio | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Halmstad, Fyllinge | PED Relevant Case Study | Compare | |
Lund, Brunnshög district | PED Case Study | Compare | |
Vienna, Am Kempelenpark | PED Case Study | Compare | |
Évora, Portugal | POCITYF – A POsitive Energy CITY Transformation Framework | PED Relevant Case Study / PED Lab | Uncompare |
Kladno, Sletiště (Sport Area), PED Winter Stadium | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Compare |
Groningen, PED South | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Groningen, PED North | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Maia, Sobreiro Social Housing | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Lab | Compare |
Lubia (Soria), CEDER-CIEMAT | PED Lab | Compare | |
Tampere, Ilokkaanpuisto district | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study | Compare |
Leon, Former Sugar Factory district | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Istanbul, Kadikoy district, Caferaga | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Espoo, Leppävaara district, Sello center | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Uncompare |
Espoo, Espoonlahti district, Lippulaiva block | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Salzburg, Gneis district | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Barcelona, Santa Coloma de Gramenet | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Tartu, City centre area | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study / PED Lab | Compare |
Bologna, Pilastro-Roveri district | GRETA – GReen Energy Transition Actions | PED Relevant Case Study | Compare |
Barcelona, SEILAB & Energy SmartLab | PED Lab | Uncompare | |
Leipzig, Baumwollspinnerei district | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Uncompare |
Kifissia, Energy community | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study |
Title | Kifissia, Energy community | Leipzig, Baumwollspinnerei district | Espoo, Leppävaara district, Sello center | Évora, Portugal | Barcelona, SEILAB & Energy SmartLab | Istanbul, Ozyegin University Campus | Uden, Loopkantstraat | Aalborg East, Aalborg Municipality, Region of Northern Jutland, Denmark |
---|---|---|---|---|---|---|---|---|
A1P001: Name of the PED case study / PED Lab | ||||||||
A1P001: Name of the PED case study / PED Lab | Kifissia, Energy community | Leipzig, Baumwollspinnerei district | Espoo, Leppävaara district, Sello center | Évora, Portugal | Barcelona, SEILAB & Energy SmartLab | Istanbul, Ozyegin University Campus | Uden, Loopkantstraat | Aalborg East, Aalborg Municipality, Region of Northern Jutland, Denmark |
A1P002: Map / aerial view / photos / graphic details / leaflet | ||||||||
A1P002: Map / aerial view / photos / graphic details / leaflet |
|
|
| |||||
A1P003: Categorisation of the PED site | ||||||||
PED case study | no | yes | yes | no | no | no | no | no |
PED relevant case study | yes | no | no | yes | no | yes | yes | yes |
PED Lab. | no | no | no | yes | yes | no | no | yes |
A1P004: Targets of the PED case study / PED Lab | ||||||||
Climate neutrality | no | yes | yes | no | no | yes | yes | yes |
Annual energy surplus | no | no | no | yes | no | no | yes | no |
Energy community | yes | no | no | yes | yes | no | no | no |
Circularity | no | no | no | no | no | no | no | no |
Air quality and urban comfort | yes | yes | no | no | no | yes | no | no |
Electrification | yes | yes | no | no | yes | yes | yes | no |
Net-zero energy cost | no | no | no | no | no | no | no | no |
Net-zero emission | no | no | no | no | yes | no | no | no |
Self-sufficiency (energy autonomous) | no | no | no | no | yes | no | no | no |
Maximise self-sufficiency | no | no | yes | no | no | no | no | yes |
Other | no | yes | no | no | yes | yes | no | no |
Other (A1P004) | Net-zero emission; Annual energy surplus | Green IT | almost nZEB district | |||||
A1P005: Phase of the PED case study / PED Lab | ||||||||
A1P005: Project Phase of your case study/PED Lab | Planning Phase | Implementation Phase | Implementation Phase | Implementation Phase | In operation | Implementation Phase | In operation | Planning Phase |
A1P006: Start Date | ||||||||
A1P006: Start date | 09/19 | 10/19 | 01/2011 | 10/24 | 06/17 | 11/22 | ||
A1P007: End Date | ||||||||
A1P007: End date | 10/22 | 09/24 | 02/2013 | 10/28 | 05/23 | 11/25 | ||
A1P008: Reference Project | ||||||||
A1P008: Reference Project | ||||||||
A1P009: Data availability | ||||||||
A1P009: Data availability |
|
|
|
|
| |||
A1P009: Other | ||||||||
A1P010: Sources | ||||||||
Any publication, link to website, deliverable referring to the PED/PED Lab |
|
| ||||||
A1P011: Geographic coordinates | ||||||||
X Coordinate (longitude): | 23.814588 | 12.318458 | 24.8101 | -7.909377 | 2.1 | 29.258300 | 5.6191 | 10.007 |
Y Coordinate (latitude): | 38.077349 | 51.326492 | 60.2179 | 38.570804 | 41.3 | 41.030600 | 51.6606 | 57.041028 |
A1P012: Country | ||||||||
A1P012: Country | Greece | Germany | Finland | Portugal | Spain | Turkey | Netherlands | Denmark |
A1P013: City | ||||||||
A1P013: City | Municipality of Kifissia | Leipzig | Espoo | Évora | Barcelona and Tarragona | Istanbul | Uden | Aalborg |
A1P014: Climate Zone (Köppen Geiger classification) | ||||||||
A1P014: Climate Zone (Köppen Geiger classification). | Csa | Dfb | Dfb | Csa | Csa | Cfa | Cfb | Dfb |
A1P015: District boundary | ||||||||
A1P015: District boundary | Virtual | Functional | Geographic | Geographic | Virtual | Geographic | Geographic | Virtual |
Other | The energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood | Geographic | ||||||
A1P016: Ownership of the case study/PED Lab | ||||||||
A1P016: Ownership of the case study/PED Lab: | Mixed | Public | Private | Private | Public | |||
A1P017: Ownership of the land / physical infrastructure | ||||||||
A1P017: Ownership of the land / physical infrastructure: | Multiple Owners | Multiple Owners | Single Owner | Single Owner | Single Owner | Multiple Owners | ||
A1P018: Number of buildings in PED | ||||||||
A1P018: Number of buildings in PED | 2 | 5 | 0 | 15 | 1 | |||
A1P019: Conditioned space | ||||||||
A1P019: Conditioned space [m²] | 17000 | 267956 | 2360 | |||||
A1P020: Total ground area | ||||||||
A1P020: Total ground area [m²] | 30000 | 53000 | 285.400 | 3860 | 31308000 | |||
A1P021: Floor area ratio: Conditioned space / total ground area | ||||||||
A1P021: Floor area ratio: Conditioned space / total ground area | 0 | 1 | 5 | 0 | 0 | 0 | 1 | 0 |
A1P022: Financial schemes | ||||||||
A1P022a: Financing - PRIVATE - Real estate | no | no | no | no | no | yes | yes | no |
A1P022a: Add the value in EUR if available [EUR] | 7804440 | |||||||
A1P022b: Financing - PRIVATE - ESCO scheme | no | no | no | no | no | no | no | no |
A1P022b: Add the value in EUR if available [EUR] | ||||||||
A1P022c: Financing - PRIVATE - Other | no | no | no | no | no | no | no | no |
A1P022c: Add the value in EUR if available [EUR] | ||||||||
A1P022d: Financing - PUBLIC - EU structural funding | no | no | no | no | no | no | no | no |
A1P022d: Add the value in EUR if available [EUR] | ||||||||
A1P022e: Financing - PUBLIC - National funding | no | no | no | no | no | no | no | no |
A1P022e: Add the value in EUR if available [EUR] | ||||||||
A1P022f: Financing - PUBLIC - Regional funding | no | no | no | no | no | no | no | no |
A1P022f: Add the value in EUR if available [EUR] | ||||||||
A1P022g: Financing - PUBLIC - Municipal funding | no | no | no | no | no | no | no | no |
A1P022g: Add the value in EUR if available [EUR] | ||||||||
A1P022h: Financing - PUBLIC - Other | no | no | no | no | no | no | no | no |
A1P022h: Add the value in EUR if available [EUR] | ||||||||
A1P022i: Financing - RESEARCH FUNDING - EU | no | no | yes | yes | no | yes | no | no |
A1P022i: Add the value in EUR if available [EUR] | 629000 | 19998275 | ||||||
A1P022j: Financing - RESEARCH FUNDING - National | no | no | no | no | no | no | no | yes |
A1P022j: Add the value in EUR if available [EUR] | ||||||||
A1P022k: Financing - RESEARCH FUNDING - Local/regional | no | no | no | no | no | no | no | no |
A1P022k: Add the value in EUR if available [EUR] | ||||||||
A1P022l: Financing - RESEARCH FUNDING - Other | no | no | no | no | no | no | no | no |
A1P022l: Add the value in EUR if available [EUR] | ||||||||
A1P022: Other | ||||||||
A1P023: Economic Targets | ||||||||
A1P023: Economic Targets |
|
|
|
| ||||
A1P023: Other | Sustainable and replicable business models regarding renewable energy systems | |||||||
A1P024: More comments: | ||||||||
A1P024: More comments: | Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation. | In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project. | The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security. | |||||
A1P025: Estimated PED case study / PED LAB costs | ||||||||
A1P025: Estimated PED case study / PED LAB costs [mil. EUR] | 1 | 7804440 | ||||||
Contact person for general enquiries | ||||||||
A1P026: Name | Artemis Giavasoglou, Kleopatra Kalampoka | Simon Baum | Jaano Juhmen | João Bravo Dias | Dr. Jaume Salom, Dra. Cristina Corchero | Cem Keskin | Tonje Healey Trulsrud | Kristian Olesen |
A1P027: Organization | Municipality of Kifissia – SPARCS local team | CENERO Energy GmbH | SIEMENS - Data Center Forum | EDP Labelec | IREC | Center for Energy, Environment and Economy, Ozyegin University | Norwegian University of Science and Technology (NTNU) | Aalborg University |
A1P028: Affiliation | Municipality / Public Bodies | Other | SME / Industry | SME / Industry | Research Center / University | Research Center / University | Research Center / University | Research Center / University |
A1P028: Other | CENERO Energy GmbH | |||||||
A1P029: Email | giavasoglou@kifissia.gr | sib@cenero.de | Jaano.juhmen@siemens.com | joao.bravodias@edp.pt | Jsalom@irec.cat | cem.keskin@ozyegin.edu.tr | tonje.h.trulsrud@ntnu.no | Kristian@plan.aau.dk |
Contact person for other special topics | ||||||||
A1P030: Name | Stavros Zapantis - vice mayor | Simon Baum | M. Pınar Mengüç | Alex Søgaard Moreno | ||||
A1P031: Email | stavros.zapantis@gmail.com | sib@cenero.de | pinar.menguc@ozyegin.edu.tr | asm@aalborg.dk | ||||
Pursuant to the General Data Protection Regulation | Yes | Yes | Yes | Yes | Yes | Yes | ||
A2P001: Fields of application | ||||||||
A2P001: Fields of application |
|
|
|
|
|
|
| |
A2P001: Other | ||||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | ||||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35) | LEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste document | Energy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materials | Stakeholder engagement, expert energy system analysis, future scenarios | ||||
A2P003: Application of ISO52000 | ||||||||
A2P003: Application of ISO52000 | No | Yes | Yes | No | ||||
A2P004: Appliances included in the calculation of the energy balance | ||||||||
A2P004: Appliances included in the calculation of the energy balance | Yes | Yes | Yes | No | No | |||
A2P005: Mobility included in the calculation of the energy balance | ||||||||
A2P005: Mobility included in the calculation of the energy balance | Yes | Yes | No | No | No | |||
A2P006: Description of how mobility is included (or not included) in the calculation | ||||||||
A2P006: Description of how mobility is included (or not included) in the calculation | – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah | Not included, the campus is a non car area except emergencies | not included | Large combined industrial, residential, and commercial area with complex flows of in- and outgoing traffic. | ||||
A2P007: Annual energy demand in buildings / Thermal demand | ||||||||
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum] | 1.65 | 0.148 | 218 | |||||
A2P008: Annual energy demand in buildings / Electric Demand | ||||||||
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum] | 0.109 | 148 | ||||||
A2P009: Annual energy demand for e-mobility | ||||||||
A2P009: Annual energy demand for e-mobility [GWh/annum] | 0 | |||||||
A2P010: Annual energy demand for urban infrastructure | ||||||||
A2P010: Annual energy demand for urban infrastructure [GWh/annum] | ||||||||
A2P011: Annual renewable electricity production on-site during target year | ||||||||
A2P011: PV | yes | yes | no | no | yes | yes | yes | no |
A2P011: PV - specify production in GWh/annum [GWh/annum] | 0.058 | |||||||
A2P011: Wind | no | no | no | no | no | no | no | yes |
A2P011: Wind - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: Hydro | no | no | no | no | no | no | no | no |
A2P011: Hydro - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: Biomass_el | no | no | no | no | no | no | no | no |
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: Biomass_peat_el | no | no | no | no | no | no | no | no |
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: PVT_el | no | no | no | no | no | no | no | no |
A2P011: PVT_el - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: Other | no | no | no | no | no | no | no | yes |
A2P011: Other - specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Annual renewable thermal production on-site during target year | ||||||||
A2P012: Geothermal | no | no | no | no | no | no | yes | no |
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Solar Thermal | no | no | no | no | no | no | no | no |
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Biomass_heat | no | no | no | no | no | no | no | no |
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Waste heat+HP | no | no | no | no | no | no | no | yes |
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum] | 300 | |||||||
A2P012: Biomass_peat_heat | no | no | no | no | no | no | no | no |
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: PVT_th | no | no | no | no | no | no | no | no |
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Biomass_firewood_th | no | no | no | no | no | no | no | no |
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Other | no | no | no | no | no | no | no | no |
A2P012 - Other: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P013: Renewable resources on-site - Additional notes | ||||||||
A2P013: Renewable resources on-site - Additional notes | *Annual energy use below is presentedin primary energy consumption | Very little wind production currently exists in the area. The electricity production of the waste incineration plant will be included at a later date. Aalborg East is partly a remarkable area for hosting a Portland cement factory that accounts for a substantial share of Denmark’s total CO2 emissions. In turn, it also provides waste heat to the district heating grid for all of Aalborg city and some of the smaller towns that are connected to the same DH grid. | ||||||
A2P014: Annual energy use | ||||||||
A2P014: Annual energy use [GWh/annum] | 2.421 | 3.5 | 0.194 | 620 | ||||
A2P015: Annual energy delivered | ||||||||
A2P015: Annual energy delivered [GWh/annum] | 0.0368 | 399 | ||||||
A2P016: Annual non-renewable electricity production on-site during target year | ||||||||
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum] | ||||||||
A2P017: Annual non-renewable thermal production on-site during target year | ||||||||
A2P017: Gas | no | no | no | no | yes | no | no | no |
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||||
A2P017: Coal | no | no | no | no | no | no | no | no |
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||||
A2P017: Oil | no | no | no | no | no | no | no | no |
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||||
A2P017: Other | no | no | no | no | no | no | no | yes |
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum] | 300 | |||||||
A2P018: Annual renewable electricity imports from outside the boundary during target year | ||||||||
A2P018: PV | no | no | no | no | no | yes | no | no |
A2P018 - PV: specify production in GWh/annum if available [GWh/annum] | 0.00045547 | |||||||
A2P018: Wind | no | no | no | no | no | no | no | no |
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: Hydro | no | no | no | no | no | no | no | no |
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: Biomass_el | no | no | no | no | no | no | no | no |
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: Biomass_peat_el | no | no | no | no | no | no | no | no |
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: PVT_el | no | no | no | no | no | no | no | no |
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: Other | no | no | no | no | no | no | no | no |
A2P018 - Other: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P019: Annual renewable thermal imports from outside the boundary during target year | ||||||||
A2P019: Geothermal | no | no | no | no | no | no | no | no |
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Solar Thermal | no | no | no | no | no | no | no | no |
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Biomass_heat | no | no | no | no | no | no | no | no |
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Waste heat+HP | no | no | no | no | no | no | no | no |
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Biomass_peat_heat | no | no | no | no | no | no | no | no |
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: PVT_th | no | no | no | no | no | no | no | no |
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Biomass_firewood_th | no | no | no | no | no | no | no | no |
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Other | no | no | no | no | no | no | no | no |
A2P019 Other: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P020: Share of RES on-site / RES outside the boundary | ||||||||
A2P020: Share of RES on-site / RES outside the boundary | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
A2P021: GHG-balance calculated for the PED | ||||||||
A2P021: GHG-balance calculated for the PED [tCO2/annum] | -0.00043 | |||||||
A2P022: KPIs related to the PED case study / PED Lab | ||||||||
A2P022: Safety & Security | Personal Safety | |||||||
A2P022: Health | Healthy community | |||||||
A2P022: Education | ||||||||
A2P022: Mobility | Sustainable mobility | |||||||
A2P022: Energy | apply | NOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emission | ||||||
A2P022: Water | ||||||||
A2P022: Economic development | capital costs, operational cots, overall economic performance (5 KPIs) | |||||||
A2P022: Housing and Community | demographic composition, diverse community, social cohesion | |||||||
A2P022: Waste | ||||||||
A2P022: Other | Smartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design) | |||||||
A2P023: Technological Solutions / Innovations - Energy Generation | ||||||||
A2P023: Photovoltaics | no | no | no | yes | yes | yes | yes | yes |
A2P023: Solar thermal collectors | no | no | no | yes | no | no | no | yes |
A2P023: Wind Turbines | no | no | no | no | no | yes | no | no |
A2P023: Geothermal energy system | no | no | no | no | no | no | yes | no |
A2P023: Waste heat recovery | no | no | no | no | no | no | no | yes |
A2P023: Waste to energy | no | no | no | no | no | no | no | yes |
A2P023: Polygeneration | no | no | no | no | no | no | no | no |
A2P023: Co-generation | no | no | no | no | no | yes | no | no |
A2P023: Heat Pump | no | no | no | no | no | yes | yes | yes |
A2P023: Hydrogen | no | no | no | no | no | no | no | no |
A2P023: Hydropower plant | no | no | no | no | no | no | no | no |
A2P023: Biomass | no | no | no | no | no | no | no | yes |
A2P023: Biogas | no | no | no | no | no | no | no | no |
A2P023: Other | ||||||||
A2P024: Technological Solutions / Innovations - Energy Flexibility | ||||||||
A2P024: A2P024: Information and Communication Technologies (ICT) | no | no | no | yes | yes | yes | no | no |
A2P024: Energy management system | no | no | no | yes | yes | yes | yes | yes |
A2P024: Demand-side management | no | no | no | no | no | yes | yes | yes |
A2P024: Smart electricity grid | no | no | no | yes | yes | no | no | yes |
A2P024: Thermal Storage | no | no | no | yes | no | no | no | yes |
A2P024: Electric Storage | no | no | no | yes | yes | yes | no | yes |
A2P024: District Heating and Cooling | no | no | no | no | no | yes | no | yes |
A2P024: Smart metering and demand-responsive control systems | no | no | no | yes | no | yes | yes | yes |
A2P024: P2P – buildings | no | no | no | yes | no | no | no | no |
A2P024: Other | ||||||||
A2P025: Technological Solutions / Innovations - Energy Efficiency | ||||||||
A2P025: Deep Retrofitting | no | no | no | no | no | no | no | yes |
A2P025: Energy efficiency measures in historic buildings | no | no | no | yes | no | no | no | no |
A2P025: High-performance new buildings | no | no | no | no | no | yes | yes | no |
A2P025: Smart Public infrastructure (e.g. smart lighting) | no | no | no | no | no | no | no | no |
A2P025: Urban data platforms | no | no | no | yes | no | no | no | no |
A2P025: Mobile applications for citizens | no | no | no | yes | no | no | no | no |
A2P025: Building services (HVAC & Lighting) | no | no | no | yes | yes | yes | yes | no |
A2P025: Smart irrigation | no | no | no | no | no | yes | no | no |
A2P025: Digital tracking for waste disposal | no | no | no | yes | no | no | no | no |
A2P025: Smart surveillance | no | no | no | yes | no | yes | no | yes |
A2P025: Other | ||||||||
A2P026: Technological Solutions / Innovations - Mobility | ||||||||
A2P026: Efficiency of vehicles (public and/or private) | no | no | no | no | yes | no | no | no |
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances) | no | no | no | no | no | no | no | no |
A2P026: e-Mobility | no | no | no | yes | no | yes | no | no |
A2P026: Soft mobility infrastructures and last mile solutions | no | no | no | yes | no | yes | no | no |
A2P026: Car-free area | no | no | no | no | no | yes | no | no |
A2P026: Other | ||||||||
A2P027: Mobility strategies - Additional notes | ||||||||
A2P027: Mobility strategies - Additional notes | Test-Concept for bidirectional charging. | |||||||
A2P028: Energy efficiency certificates | ||||||||
A2P028: Energy efficiency certificates | No | Yes | Yes | Yes | ||||
A2P028: If yes, please specify and/or enter notes | Energy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwelling | EPC = 0, energy neutral building | ||||||
A2P029: Any other building / district certificates | ||||||||
A2P029: Any other building / district certificates | No | Yes | No | No | ||||
A2P029: If yes, please specify and/or enter notes | LEED BD+C, LEED NC CAMPUS | |||||||
A3P001: Relevant city /national strategy | ||||||||
A3P001: Relevant city /national strategy |
|
|
|
|
| |||
A3P002: Quantitative targets included in the city / national strategy | ||||||||
A3P002: Quantitative targets included in the city / national strategy | Reduction of 1018000 tons CO2 by 2030 | |||||||
A3P003: Strategies towards decarbonization of the gas grid | ||||||||
A3P003: Strategies towards decarbonization of the gas grid |
|
|
| |||||
A3P003: Other | Boiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible Pricing | |||||||
A3P004: Identification of needs and priorities | ||||||||
A3P004: Identification of needs and priorities | -Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation. | Carbon and Energy Neutrality | Decarbonize part of Aalborg city as a way of working incrementally towards being a zero-emission city. | |||||
A3P005: Sustainable behaviour | ||||||||
A3P005: Sustainable behaviour | -Improving the development of Net Zero Energy Buildings and Flexible Energy buildings. | Under LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package. | - Stakeholder engagement; - Focus on implementing renewable energy production where possible; - Rretrofitting and energy optimization of existing buildings. | |||||
A3P006: Economic strategies | ||||||||
A3P006: Economic strategies |
|
|
| |||||
A3P006: Other | operational savings through efficiency measures | |||||||
A3P007: Social models | ||||||||
A3P007: Social models |
|
|
|
| ||||
A3P007: Other | ||||||||
A3P008: Integrated urban strategies | ||||||||
A3P008: Integrated urban strategies |
|
| ||||||
A3P008: Other | ||||||||
A3P009: Environmental strategies | ||||||||
A3P009: Environmental strategies |
|
|
|
| ||||
A3P009: Other | Positive Energy Balance for the demo site | |||||||
A3P010: Legal / Regulatory aspects | ||||||||
A3P010: Legal / Regulatory aspects | - European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013. | ISO 45001, ISO 14001, ISO 50001, Zero Waste Policy | Current energy tariffs disincentivize both individual and collective PV systems – meaning energy communities are not economically feasible, housing associations and public buildings struggle with finding a secure RoI for solar panels, and citizens and local industry lack an incentive to install solar panels on their own | |||||
B1P001: PED/PED relevant concept definition | ||||||||
B1P001: PED/PED relevant concept definition | The PED main objective is to achieve the energy transition while preserving cultural heritage and improving citizen’s quality of life. | The campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED. | The demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project. | The large scale provides interesting opportunities for both urban development and strategic energy planning; the diverse mix of buildings and functions also allow for interesting discussions regarding PEDs. Another interesting facet is that the district heating grid is almost fully supplied by waste heat. | ||||
B1P002: Motivation behind PED/PED relevant project development | ||||||||
B1P002: Motivation behind PED/PED relevant project development | POCITYF brings together eight cities (Lightouse and Fellow cities), all having cultural heritage areas in their territory. All are intrinsically motivated to participate in the necessary energy transition not only for their conventional city districts of mixed-used, but also for districts with individually specificities as those belonging in their cultural heritage, which at the moment may be acting as barriers for their further environmental sustainability, but after POCITYF will be acting as a promising building retrofits roadmap for similar and other EU cities. | The purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency. | The need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes. | The area has an interesting history of development and has recently undergone several urban improvements. This is coupled with a strong local network of business owners and other stakeholders, all with an interest in developing the area in the best way possible. This made for an interesting case from a planning perspective to investigate how this network would pick up on the concept of PED and whether they could see any potential utility in relation to their everyday experiences. | ||||
B1P003: Environment of the case study area | ||||||||
B2P003: Environment of the case study area | Urban area | Suburban area | Suburban area | Suburban area | ||||
B1P004: Type of district | ||||||||
B2P004: Type of district |
|
|
|
| ||||
B1P005: Case Study Context | ||||||||
B1P005: Case Study Context |
|
|
|
|
| |||
B1P006: Year of construction | ||||||||
B1P006: Year of construction | 2024 | |||||||
B1P007: District population before intervention - Residential | ||||||||
B1P007: District population before intervention - Residential | 16.931 | |||||||
B1P008: District population after intervention - Residential | ||||||||
B1P008: District population after intervention - Residential | ||||||||
B1P009: District population before intervention - Non-residential | ||||||||
B1P009: District population before intervention - Non-residential | 9800 | |||||||
B1P010: District population after intervention - Non-residential | ||||||||
B1P010: District population after intervention - Non-residential | 9800 | |||||||
B1P011: Population density before intervention | ||||||||
B1P011: Population density before intervention | 0 | 0 | 0 | 0 | 0 | 34 | 0 | 0 |
B1P012: Population density after intervention | ||||||||
B1P012: Population density after intervention | 0 | 0 | 0 | 0 | 0 | 34.337771548704 | 0 | 0 |
B1P013: Building and Land Use before intervention | ||||||||
B1P013: Residential | no | no | no | no | no | no | no | no |
B1P013 - Residential: Specify the sqm [m²] | ||||||||
B1P013: Office | no | no | no | no | no | no | no | no |
B1P013 - Office: Specify the sqm [m²] | ||||||||
B1P013: Industry and Utility | no | no | no | no | no | no | no | no |
B1P013 - Industry and Utility: Specify the sqm [m²] | ||||||||
B1P013: Commercial | no | no | no | no | no | no | no | no |
B1P013 - Commercial: Specify the sqm [m²] | ||||||||
B1P013: Institutional | no | no | no | no | no | yes | no | no |
B1P013 - Institutional: Specify the sqm [m²] | 285.400 | |||||||
B1P013: Natural areas | no | no | no | no | no | no | no | no |
B1P013 - Natural areas: Specify the sqm [m²] | ||||||||
B1P013: Recreational | no | no | no | no | no | no | no | no |
B1P013 - Recreational: Specify the sqm [m²] | ||||||||
B1P013: Dismissed areas | no | no | no | no | no | no | no | no |
B1P013 - Dismissed areas: Specify the sqm [m²] | ||||||||
B1P013: Other | no | no | no | no | no | no | no | no |
B1P013 - Other: Specify the sqm [m²] | ||||||||
B1P014: Building and Land Use after intervention | ||||||||
B1P014: Residential | no | no | no | no | no | no | yes | no |
B1P014 - Residential: Specify the sqm [m²] | 2394 | |||||||
B1P014: Office | no | no | no | no | no | no | no | no |
B1P014 - Office: Specify the sqm [m²] | ||||||||
B1P014: Industry and Utility | no | no | no | no | no | no | no | no |
B1P014 - Industry and Utility: Specify the sqm [m²] | ||||||||
B1P014: Commercial | no | no | no | no | no | no | no | no |
B1P014 - Commercial: Specify the sqm [m²] | ||||||||
B1P014: Institutional | no | no | no | no | no | yes | no | no |
B1P014 - Institutional: Specify the sqm [m²] | 280000 | |||||||
B1P014: Natural areas | no | no | no | no | no | no | no | no |
B1P014 - Natural areas: Specify the sqm [m²] | ||||||||
B1P014: Recreational | no | no | no | no | no | no | no | no |
B1P014 - Recreational: Specify the sqm [m²] | ||||||||
B1P014: Dismissed areas | no | no | no | no | no | no | no | no |
B1P014 - Dismissed areas: Specify the sqm [m²] | ||||||||
B1P014: Other | no | no | no | no | no | no | no | no |
B1P014 - Other: Specify the sqm [m²] | ||||||||
B2P001: PED Lab concept definition | ||||||||
B2P001: PED Lab concept definition | addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation | An ongoing process and dialogue with local stakeholders to determine the future development of the area. | ||||||
B2P002: Installation life time | ||||||||
B2P002: Installation life time | No new installation will be made throughout the project. Rather the project will attempt to establish a local PED network with the aim of empowering the stakeholders to better engage with sustainable technologies. | |||||||
B2P003: Scale of action | ||||||||
B2P003: Scale | District | Virtual | District | |||||
B2P004: Operator of the installation | ||||||||
B2P004: Operator of the installation | IREC | Kristian Olesen | ||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | ||||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | Replication is primarily focused on the establishment of a local network with an interest in and understanding of PED. | |||||||
B2P006: Circular Economy Approach | ||||||||
B2P006: Do you apply any strategy to reuse and recycling the materials? | No | No | ||||||
B2P006: Other | ||||||||
B2P007: Motivation for developing the PED Lab | ||||||||
B2P007: Motivation for developing the PED Lab |
|
| ||||||
B2P007: Other | ||||||||
B2P008: Lead partner that manages the PED Lab | ||||||||
B2P008: Lead partner that manages the PED Lab | Research center/University | Research center/University | ||||||
B2P008: Other | ||||||||
B2P009: Collaborative partners that participate in the PED Lab | ||||||||
B2P009: Collaborative partners that participate in the PED Lab |
| |||||||
B2P009: Other | ||||||||
B2P010: Synergies between the fields of activities | ||||||||
B2P010: Synergies between the fields of activities | ||||||||
B2P011: Available facilities to test urban configurations in PED Lab | ||||||||
B2P011: Available facilities to test urban configurations in PED Lab |
|
| ||||||
B2P011: Other | ||||||||
B2P012: Incubation capacities of PED Lab | ||||||||
B2P012: Incubation capacities of PED Lab |
|
| ||||||
B2P013: Availability of the facilities for external people | ||||||||
B2P013: Availability of the facilities for external people | ||||||||
B2P014: Monitoring measures | ||||||||
B2P014: Monitoring measures |
| |||||||
B2P015: Key Performance indicators | ||||||||
B2P015: Key Performance indicators |
|
| ||||||
B2P016: Execution of operations | ||||||||
B2P016: Execution of operations | ||||||||
B2P017: Capacities | ||||||||
B2P017: Capacities | - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. | |||||||
B2P018: Relations with stakeholders | ||||||||
B2P018: Relations with stakeholders | ||||||||
B2P019: Available tools | ||||||||
B2P019: Available tools |
| |||||||
B2P019: Available tools | ||||||||
B2P020: External accessibility | ||||||||
B2P020: External accessibility | ||||||||
C1P001: Unlocking Factors | ||||||||
C1P001: Recent technological improvements for on-site RES production | 5 - Very important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 2 - Slightly important | |
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 4 - Important | |
C1P001: Energy Communities, P2P, Prosumers concepts | 5 - Very important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 4 - Important | 3 - Moderately important | 1 - Unimportant | |
C1P001: Storage systems and E-mobility market penetration | 1 - Unimportant | 4 - Important | 5 - Very important | 4 - Important | 4 - Important | 3 - Moderately important | ||
C1P001: Decreasing costs of innovative materials | 4 - Important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 4 - Important | 4 - Important | 1 - Unimportant | |
C1P001: Financial mechanisms to reduce costs and maximize benefits | 4 - Important | 1 - Unimportant | 4 - Important | 5 - Very important | 5 - Very important | 3 - Moderately important | 4 - Important | |
C1P001: The ability to predict Multiple Benefits | 1 - Unimportant | 2 - Slightly important | 4 - Important | 4 - Important | 3 - Moderately important | 2 - Slightly important | ||
C1P001: The ability to predict the distribution of benefits and impacts | 1 - Unimportant | 3 - Moderately important | 4 - Important | 4 - Important | 3 - Moderately important | 4 - Important | ||
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up) | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 5 - Very important | |
C1P001: Social acceptance (top-down) | 5 - Very important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 4 - Important | 5 - Very important | 4 - Important | |
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.) | 3 - Moderately important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 5 - Very important | 4 - Important | 4 - Important | |
C1P001: Presence of integrated urban strategies and plans | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 3 - Moderately important | |
C1P001: Multidisciplinary approaches available for systemic integration | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important | 4 - Important | 5 - Very important | 5 - Very important | |
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects | 4 - Important | 1 - Unimportant | 4 - Important | 5 - Very important | 4 - Important | 1 - Unimportant | 2 - Slightly important | |
C1P001: Availability of RES on site (Local RES) | 1 - Unimportant | 3 - Moderately important | 4 - Important | 5 - Very important | 5 - Very important | 2 - Slightly important | ||
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders | 4 - Important | 1 - Unimportant | 4 - Important | 5 - Very important | 4 - Important | 4 - Important | 5 - Very important | |
C1P001: Any other UNLOCKING FACTORS | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | ||
C1P001: Any other UNLOCKING FACTORS (if any) | ||||||||
C1P002: Driving Factors | ||||||||
C1P002: Climate Change adaptation need | 4 - Important | 1 - Unimportant | 5 - Very important | 4 - Important | 5 - Very important | 5 - Very important | 2 - Slightly important | |
C1P002: Climate Change mitigation need (local RES production and efficiency) | 5 - Very important | 1 - Unimportant | 4 - Important | 4 - Important | 5 - Very important | 5 - Very important | 4 - Important | |
C1P002: Rapid urbanization trend and need of urban expansions | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 2 - Slightly important | |
C1P002: Urban re-development of existing built environment | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 4 - Important | 4 - Important | 4 - Important | 5 - Very important | |
C1P002: Economic growth need | 2 - Slightly important | 1 - Unimportant | 4 - Important | 4 - Important | 4 - Important | 1 - Unimportant | 2 - Slightly important | |
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.) | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 4 - Important | 5 - Very important | 5 - Very important | 3 - Moderately important | |
C1P002: Territorial and market attractiveness | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 4 - Important | 2 - Slightly important | 3 - Moderately important | |
C1P002: Energy autonomy/independence | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | |
C1P002: Any other DRIVING FACTOR | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | ||
C1P002: Any other DRIVING FACTOR (if any) | ||||||||
C1P003: Administrative barriers | ||||||||
C1P003: Difficulty in the coordination of high number of partners and authorities | 4 - Important | 1 - Unimportant | 5 - Very important | 4 - Important | 5 - Very important | 1 - Unimportant | 4 - Important | |
C1P003: Lack of good cooperation and acceptance among partners | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 3 - Moderately important | |
C1P003: Lack of public participation | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important | 4 - Important | 1 - Unimportant | 3 - Moderately important | |
C1P003: Lack of institutions/mechanisms to disseminate information | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 2 - Slightly important | |
C1P003:Long and complex procedures for authorization of project activities | 5 - Very important | 1 - Unimportant | 5 - Very important | 5 - Very important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | |
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy | 4 - Important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | |
C1P003: Complicated and non-comprehensive public procurement | 4 - Important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 3 - Moderately important | |
C1P003: Fragmented and or complex ownership structure | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 4 - Important | 1 - Unimportant | 3 - Moderately important | |
C1P003: City administration & cross-sectoral attitude/approaches (silos) | 3 - Moderately important | 1 - Unimportant | 4 - Important | 4 - Important | 5 - Very important | 1 - Unimportant | 5 - Very important | |
C1P003: Lack of internal capacities to support energy transition | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | |
C1P003: Any other Administrative BARRIER | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 4 - Important | 1 - Unimportant | ||
C1P003: Any other Administrative BARRIER (if any) | Delay in the Environmental Dialogue processing in the municipality | |||||||
C1P004: Policy barriers | ||||||||
C1P004: Lack of long-term and consistent energy plans and policies | 4 - Important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | |
C1P004: Lacking or fragmented local political commitment and support on the long term | 4 - Important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 2 - Slightly important | |
C1P004: Lack of Cooperation & support between national-regional-local entities | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | |
C1P004: Any other Political BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | ||
C1P004: Any other Political BARRIER (if any) | ||||||||
C1P005: Legal and Regulatory barriers | ||||||||
C1P005: Inadequate regulations for new technologies | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | |
C1P005: Regulatory instability | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | |
C1P005: Non-effective regulations | 4 - Important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 4 - Important | 1 - Unimportant | 2 - Slightly important | |
C1P005: Unfavorable local regulations for innovative technologies | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important | 4 - Important | 1 - Unimportant | 3 - Moderately important | |
C1P005: Building code and land-use planning hindering innovative technologies | 4 - Important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 3 - Moderately important | |
C1P005: Insufficient or insecure financial incentives | 4 - Important | 1 - Unimportant | 2 - Slightly important | 5 - Very important | 5 - Very important | 1 - Unimportant | 4 - Important | |
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | |
C1P005: Shortage of proven and tested solutions and examples | 1 - Unimportant | 5 - Very important | 4 - Important | 4 - Important | 1 - Unimportant | 2 - Slightly important | ||
C1P005: Any other Legal and Regulatory BARRIER | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | ||
C1P005: Any other Legal and Regulatory BARRIER (if any) | ||||||||
C1P006: Environmental barriers | ||||||||
C1P006: Environmental barriers | Air Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important) | |||||||
C1P007: Technical barriers | ||||||||
C1P007: Lack of skilled and trained personnel | 4 - Important | 1 - Unimportant | 2 - Slightly important | 5 - Very important | 5 - Very important | 1 - Unimportant | 2 - Slightly important | |
C1P007: Deficient planning | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | 5 - Very important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | |
C1P007: Retrofitting work in dwellings in occupied state | 4 - Important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 5 - Very important | |
C1P007: Lack of well-defined process | 4 - Important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 4 - Important | 1 - Unimportant | 4 - Important | |
C1P007: Inaccuracy in energy modelling and simulation | 4 - Important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important | 1 - Unimportant | 2 - Slightly important | |
C1P007: Lack/cost of computational scalability | 4 - Important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | |
C1P007: Grid congestion, grid instability | 4 - Important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | |
C1P007: Negative effects of project intervention on the natural environment | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 2 - Slightly important | |
C1P007: Energy retrofitting work in dense and/or historical urban environment | 5 - Very important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 4 - Important | |
C1P007: Difficult definition of system boundaries | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 5 - Very important | |
C1P007: Any other Thecnical BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | ||
C1P007: Any other Thecnical BARRIER (if any) | ||||||||
C1P008: Social and Cultural barriers | ||||||||
C1P008: Inertia | 4 - Important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 4 - Important | 1 - Unimportant | 2 - Slightly important | |
C1P008: Lack of values and interest in energy optimization measurements | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important | 1 - Unimportant | 2 - Slightly important | |
C1P008: Low acceptance of new projects and technologies | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 5 - Very important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | |
C1P008: Difficulty of finding and engaging relevant actors | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 4 - Important | 1 - Unimportant | 2 - Slightly important | |
C1P008: Lack of trust beyond social network | 4 - Important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 4 - Important | 1 - Unimportant | 1 - Unimportant | |
C1P008: Rebound effect | 4 - Important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | |
C1P008: Hostile or passive attitude towards environmentalism | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important | 1 - Unimportant | 2 - Slightly important | |
C1P008: Exclusion of socially disadvantaged groups | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 3 - Moderately important | |
C1P008: Non-energy issues are more important and urgent for actors | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | |
C1P008: Hostile or passive attitude towards energy collaboration | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | ||
C1P008: Any other Social BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | ||
C1P008: Any other Social BARRIER (if any) | ||||||||
C1P009: Information and Awareness barriers | ||||||||
C1P009: Insufficient information on the part of potential users and consumers | 1 - Unimportant | 4 - Important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 2 - Slightly important | ||
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important | 1 - Unimportant | 5 - Very important | ||
C1P009: Lack of awareness among authorities | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | ||
C1P009: Information asymmetry causing power asymmetry of established actors | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 4 - Important | ||
C1P009: High costs of design, material, construction, and installation | 1 - Unimportant | 4 - Important | 5 - Very important | 4 - Important | 1 - Unimportant | 3 - Moderately important | ||
C1P009: Any other Information and Awareness BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | ||
C1P009: Any other Information and Awareness BARRIER (if any) | ||||||||
C1P010: Financial barriers | ||||||||
C1P010: Hidden costs | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 4 - Important | 1 - Unimportant | 4 - Important | ||
C1P010: Insufficient external financial support and funding for project activities | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | ||
C1P010: Economic crisis | 1 - Unimportant | 3 - Moderately important | 4 - Important | 4 - Important | 1 - Unimportant | 1 - Unimportant | ||
C1P010: Risk and uncertainty | 1 - Unimportant | 2 - Slightly important | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important | ||
C1P010: Lack of consolidated and tested business models | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 4 - Important | 1 - Unimportant | 4 - Important | ||
C1P010: Limited access to capital and cost disincentives | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 2 - Slightly important | |||
C1P010: Any other Financial BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | ||
C1P010: Any other Financial BARRIER (if any) | ||||||||
C1P011: Market barriers | ||||||||
C1P011: Split incentives | 1 - Unimportant | 1 - Unimportant | 4 - Important | 5 - Very important | 1 - Unimportant | 2 - Slightly important | ||
C1P011: Energy price distortion | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important | 1 - Unimportant | 2 - Slightly important | ||
C1P011: Energy market concentration, gatekeeper actors (DSOs) | 1 - Unimportant | 2 - Slightly important | 5 - Very important | 4 - Important | 1 - Unimportant | 3 - Moderately important | ||
C1P011: Any other Market BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | ||
C1P011: Any other Market BARRIER (if any) | ||||||||
C1P012: Stakeholders involved | ||||||||
C1P012: Government/Public Authorities |
|
| ||||||
C1P012: Research & Innovation |
|
| ||||||
C1P012: Financial/Funding |
| |||||||
C1P012: Analyst, ICT and Big Data |
| |||||||
C1P012: Business process management |
| |||||||
C1P012: Urban Services providers |
| |||||||
C1P012: Real Estate developers |
|
| ||||||
C1P012: Design/Construction companies |
|
| ||||||
C1P012: End‐users/Occupants/Energy Citizens |
|
| ||||||
C1P012: Social/Civil Society/NGOs |
| |||||||
C1P012: Industry/SME/eCommerce |
| |||||||
C1P012: Other |
| |||||||
C1P012: Other (if any) | ||||||||
Summary |
Authors (framework concept)
Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)
Contributors (to the content)
Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)
Implemented by
Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)