Filters:
NameProjectTypeCompare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleLubia (Soria), CEDER-CIEMAT
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabLubia (Soria), CEDER-CIEMAT
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyno
PED relevant case studyno
PED Lab.yes
A1P004: Targets of the PED case study / PED Lab
Climate neutralityno
Annual energy surplusno
Energy communityno
Circularityno
Air quality and urban comfortyes
Electrificationno
Net-zero energy costno
Net-zero emissionyes
Self-sufficiency (energy autonomous)yes
Maximise self-sufficiencyno
Otherno
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation Phase
A1P006: Start Date
A1P006: Start date11/19
A1P007: End Date
A1P007: End date12/23
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • http://www.ceder.es/redes-inteligentes,
  • O. Izquierdo-Monge, Paula Peña-Carro et al. Conversion of a network section with loads, storage systems and renewable generation sources into a smart microgrid. Appl. Sci. 2021, 11(11), 5012. https://doi.org/10.3390/app11115012,
  • O. Izquierdo-Monge, Paula Peña-Carro et al. A Methodology for the Conversion of a Network Section with Generation Sources, Storage and Loads into an Electrical Microgrid Based on Raspberry Pi and Home Assistant. ICSC-Cities 2020, CCIS 1359 proceedings. Springer. https:// doi.org/10.1007/978-3-030-69136-3_1
A1P011: Geographic coordinates
X Coordinate (longitude):-2.508
Y Coordinate (latitude):41.603
A1P012: Country
A1P012: CountrySpain
A1P013: City
A1P013: CityLubia - Soria
A1P014: Climate Zone (Köppen Geiger classification)
A1P014: Climate Zone (Köppen Geiger classification).Cfb
A1P015: District boundary
A1P015: District boundaryGeographic
Other
A1P016: Ownership of the case study/PED Lab
A1P016: Ownership of the case study/PED Lab:Public
A1P017: Ownership of the land / physical infrastructure
A1P017: Ownership of the land / physical infrastructure:Single Owner
A1P018: Number of buildings in PED
A1P018: Number of buildings in PED6
A1P019: Conditioned space
A1P019: Conditioned space [m²]
A1P020: Total ground area
A1P020: Total ground area [m²]6400000
A1P021: Floor area ratio: Conditioned space / total ground area
A1P021: Floor area ratio: Conditioned space / total ground area0
A1P022: Financial schemes
A1P022a: Financing - PRIVATE - Real estateno
A1P022a: Add the value in EUR if available [EUR]
A1P022b: Financing - PRIVATE - ESCO schemeno
A1P022b: Add the value in EUR if available [EUR]
A1P022c: Financing - PRIVATE - Otherno
A1P022c: Add the value in EUR if available [EUR]
A1P022d: Financing - PUBLIC - EU structural fundingno
A1P022d: Add the value in EUR if available [EUR]
A1P022e: Financing - PUBLIC - National fundingno
A1P022e: Add the value in EUR if available [EUR]
A1P022f: Financing - PUBLIC - Regional fundingno
A1P022f: Add the value in EUR if available [EUR]
A1P022g: Financing - PUBLIC - Municipal fundingno
A1P022g: Add the value in EUR if available [EUR]
A1P022h: Financing - PUBLIC - Otherno
A1P022h: Add the value in EUR if available [EUR]
A1P022i: Financing - RESEARCH FUNDING - EUno
A1P022i: Add the value in EUR if available [EUR]
A1P022j: Financing - RESEARCH FUNDING - Nationalyes
A1P022j: Add the value in EUR if available [EUR]
A1P022k: Financing - RESEARCH FUNDING - Local/regionalyes
A1P022k: Add the value in EUR if available [EUR]
A1P022l: Financing - RESEARCH FUNDING - Otherno
A1P022l: Add the value in EUR if available [EUR]
A1P022: Other
A1P023: Economic Targets
A1P023: Economic Targets
  • Boosting local and sustainable production,
  • Boosting consumption of local and sustainable products
A1P023: Other
A1P024: More comments:
A1P024: More comments:The Centre for the Development of Renewable Energy (CEDER)is specialized in applied research, development and promotion of renewable energy. Among the facilities of this Centre, the urban laboratory CEDER-CIEMAT assess the performance of different configurations of energy networks at the district level. This PED-Lab infrastructure is an energy district that connects six office buildings with energy generation installations by means of two energy rings: electrical grid (in operation phase) and thermal network (in the implementation phase). The buildings of this PED Lab can act as energy demanders or suppliers depending on the climatic and operational conditions. The majority of these buildings are constructed with conventional technologies but some of them are implemented with efficient and sustainable measures. The thermal network is composed by two biomass boilers, 300 kW power each, and water tanks with 90 kWh of thermal storage. This network will shortly be expanded with a low temperature (90°C) and high temperature (150°-250°C) rings. The low-temperature ring is made up by two Stirling engine cogeneration boilers (one biomass gasification boiler and one gas boiler). The high-temperature ring has a thermal generator made up of Fresnel solar concentrators and an ORC cogeneration system fed directly from the solar concentrator. The high-temperature ring is interconnected with the low-temperature ring through an oil/water heat exchanger. This network has thermal storage systems in the modalities of: aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. The electrical grid incorporates different renewable generation technologies (50 kW wind turbine and eight different photovoltaic systems, a reversible hydraulic system), and engine generator of 100 kVA, electricity storages (batteries) and flexible loads.
A1P025: Estimated PED case study / PED LAB costs
A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
Contact person for general enquiries
A1P026: NameDr. Raquel Ramos
A1P027: OrganizationCentre for the Development of Renewable Energy (CEDER) - Centre for Energy, Environment and Technology Research (CIEMAT)
A1P028: AffiliationResearch Center / University
A1P028: Other
A1P029: Emailraquel.ramos@ciemat.es
Contact person for other special topics
A1P030: NameDr. Oscar Seco
A1P031: Emailoscar.seco@ciemat.es
Pursuant to the General Data Protection RegulationYes
A2P001: Fields of application
A2P001: Fields of application
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • Digital technologies,
  • Indoor air quality
A2P001: Other
A2P002: Tools/strategies/methods applied for each of the above-selected fields
A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - Buildings energy retrofit. Energy production: - Biomass Boiler capacity: 0.6 MW. Annual production: 1.2 GWh - Solar thermal collectors: 70 kW, planned extended to: 0.47MW - Geotermal & Absorption Pumps: 100 kW - Share of renewables after extension: 100% (30% solar thermal and 70% biomass) - AOC 50kW wind turbine. Awaiting installation of a two-way AC-AC converter for subsequent connection to the grid - Bornay Inclin 3 kW wind turbine, connected to 24 Vdc batteries, to be connected to the grid by means of Xantrex inverter/charger - 9kW photovoltaic park (66PV panels, brand BP Solar,type BP5140,of 140W) connected to the grid by means of two INGECON SUN 5 inverters - 5kW photovoltaic pergola (24PV panels, brand Solon, type P200, of 210W) connected to the grid by means of one INGECON SUN 5 inverter - 8.28kW photovoltaic roof (36PV panels, Brand LDK, type LDK-230P-20), connected to the grid by means of one INGECONSUN 10 inverter - 12kW photovoltaic roof (80PV panels, brand Gamesa, type GS-1501), connected to the grid. - Reversible hydraulic system connected to a 60 kW electric generator and a pumping system. -Stirling engine with a heat lamp based on natural gas, a helium cool lamp, 10kWe maximum power delivered and global performance of approximately 33%. Energy flexibility: - Thermal storage systems: water tanks 90kW, aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. - Electrical storage systems: batteries (lead-acid and lithium-ion). - Flexible loads. Control systems and Digital technologies: - Full monitoring campaign. - Smart-meters installation to monitor consumption and suggest another energy behaviours. - Dynamic simulation tools to optimize the energy performance. Urban comfort and air quality: - Meteorological stations to monitor the climate evolution. - Microclimatic simulation tools to quantify the thermal behaviour.
A2P003: Application of ISO52000
A2P003: Application of ISO52000No
A2P004: Appliances included in the calculation of the energy balance
A2P004: Appliances included in the calculation of the energy balanceYes
A2P005: Mobility included in the calculation of the energy balance
A2P005: Mobility included in the calculation of the energy balanceNo
A2P006: Description of how mobility is included (or not included) in the calculation
A2P006: Description of how mobility is included (or not included) in the calculation
A2P007: Annual energy demand in buildings / Thermal demand
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]
A2P008: Annual energy demand in buildings / Electric Demand
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]
A2P009: Annual energy demand for e-mobility
A2P009: Annual energy demand for e-mobility [GWh/annum]
A2P010: Annual energy demand for urban infrastructure
A2P010: Annual energy demand for urban infrastructure [GWh/annum]
A2P011: Annual renewable electricity production on-site during target year
A2P011: PVyes
A2P011: PV - specify production in GWh/annum [GWh/annum]
A2P011: Windyes
A2P011: Wind - specify production in GWh/annum [GWh/annum]
A2P011: Hydroyes
A2P011: Hydro - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_elyes
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_peat_elno
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
A2P011: PVT_elno
A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
A2P011: Otherno
A2P011: Other - specify production in GWh/annum [GWh/annum]
A2P012: Annual renewable thermal production on-site during target year
A2P012: Geothermalyes
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Solar Thermalyes
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_heatyes
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: Waste heat+HPyes
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_peat_heatno
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: PVT_thno
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_firewood_thyes
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Otherno
A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
A2P013: Renewable resources on-site - Additional notes
A2P013: Renewable resources on-site - Additional notes
A2P014: Annual energy use
A2P014: Annual energy use [GWh/annum]
A2P015: Annual energy delivered
A2P015: Annual energy delivered [GWh/annum]
A2P016: Annual non-renewable electricity production on-site during target year
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]
A2P017: Annual non-renewable thermal production on-site during target year
A2P017: Gasno
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Coalno
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Oilno
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Otherno
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P018: Annual renewable electricity imports from outside the boundary during target year
A2P018: PVno
A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
A2P018: Windno
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
A2P018: Hydrono
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_elno
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_peat_elno
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
A2P018: PVT_elno
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Otherno
A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
A2P019: Annual renewable thermal imports from outside the boundary during target year
A2P019: Geothermalno
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Solar Thermalno
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_heatno
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: Waste heat+HPno
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_peat_heatno
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: PVT_thno
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_firewood_thno
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Otherno
A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
A2P020: Share of RES on-site / RES outside the boundary
A2P020: Share of RES on-site / RES outside the boundary0
A2P021: GHG-balance calculated for the PED
A2P021: GHG-balance calculated for the PED [tCO2/annum]
A2P022: KPIs related to the PED case study / PED Lab
A2P022: Safety & Security
A2P022: Health
A2P022: Education
A2P022: Mobility
A2P022: Energy
A2P022: Water
A2P022: Economic development
A2P022: Housing and Community
A2P022: Waste
A2P022: Other
A2P023: Technological Solutions / Innovations - Energy Generation
A2P023: Photovoltaicsyes
A2P023: Solar thermal collectorsyes
A2P023: Wind Turbinesyes
A2P023: Geothermal energy systemyes
A2P023: Waste heat recoveryyes
A2P023: Waste to energyno
A2P023: Polygenerationyes
A2P023: Co-generationyes
A2P023: Heat Pumpyes
A2P023: Hydrogenyes
A2P023: Hydropower plantyes
A2P023: Biomassyes
A2P023: Biogasno
A2P023: Other
A2P024: Technological Solutions / Innovations - Energy Flexibility
A2P024: A2P024: Information and Communication Technologies (ICT)yes
A2P024: Energy management systemyes
A2P024: Demand-side managementyes
A2P024: Smart electricity gridyes
A2P024: Thermal Storageyes
A2P024: Electric Storageyes
A2P024: District Heating and Coolingyes
A2P024: Smart metering and demand-responsive control systemsyes
A2P024: P2P – buildingsno
A2P024: Other
A2P025: Technological Solutions / Innovations - Energy Efficiency
A2P025: Deep Retrofittingyes
A2P025: Energy efficiency measures in historic buildingsno
A2P025: High-performance new buildingsno
A2P025: Smart Public infrastructure (e.g. smart lighting)no
A2P025: Urban data platformsno
A2P025: Mobile applications for citizensno
A2P025: Building services (HVAC & Lighting)yes
A2P025: Smart irrigationno
A2P025: Digital tracking for waste disposalno
A2P025: Smart surveillanceno
A2P025: Other
A2P026: Technological Solutions / Innovations - Mobility
A2P026: Efficiency of vehicles (public and/or private)no
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)no
A2P026: e-Mobilityno
A2P026: Soft mobility infrastructures and last mile solutionsno
A2P026: Car-free areayes
A2P026: Other
A2P027: Mobility strategies - Additional notes
A2P027: Mobility strategies - Additional notes
A2P028: Energy efficiency certificates
A2P028: Energy efficiency certificatesYes
A2P028: If yes, please specify and/or enter notesIn Spain it is mandatory the Energy Performance Certificate in order to buy or rent a house or a dwelling
A2P029: Any other building / district certificates
A2P029: Any other building / district certificatesNo
A2P029: If yes, please specify and/or enter notes
A3P001: Relevant city /national strategy
A3P001: Relevant city /national strategy
  • Smart cities strategies,
  • New development strategies,
  • Promotion of energy communities (REC/CEC),
  • Climate change adaption plan/strategy (e.g. Climate City contract)
A3P002: Quantitative targets included in the city / national strategy
A3P002: Quantitative targets included in the city / national strategy- Testing the combination of renewable technologies at district level. - Optimization of the generation side based on the weather forecasting and demand side. - Optimization of the control system, connected to the central node, to design and perform virtual analyses based on the combination of all the systems and infrastructures. - Optimization of ICT systems. - Design and management of a virtual analysis - Optimization of efficient measures: building performance, user´s behaviour… - Combination of flexible storage systems to operate the global installation.
A3P003: Strategies towards decarbonization of the gas grid
A3P003: Strategies towards decarbonization of the gas grid
  • Electrification of Heating System based on Heat Pumps,
  • Biogas,
  • Hydrogen
A3P003: Other
A3P004: Identification of needs and priorities
A3P004: Identification of needs and priorities- Create a thermal energy storage tank to be used for air conditioning the buildings. - Some buildings need to be renovated both to increase the energy performance, the seismic behaviour and spaces liveability and comfort. - Optimizing the coupling between technologies. - Guarantee the flexibility to operate the renewable installations to operate in different phases and with different configurations. - CEDER is a public research center and needs to have connected any energy system to the same grid. - CEDER has an industrial develop area where some experimental thermal storage system could be tested.
A3P005: Sustainable behaviour
A3P005: Sustainable behaviour- Minimize the building energy consumption while maintaining indoor comfort levels. - Onsite renewable production with flexible storage elements to fix demand side and generation side. - Flexible control solutions through digitalization systems.
A3P006: Economic strategies
A3P006: Economic strategies
  • Demand management Living Lab
A3P006: Other
A3P007: Social models
A3P007: Social models
  • Digital Inclusion,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
A3P007: Other
A3P008: Integrated urban strategies
A3P008: Integrated urban strategies
  • District Energy plans,
  • Building / district Certification
A3P008: Other
A3P009: Environmental strategies
A3P009: Environmental strategies
  • Energy Neutral,
  • Low Emission Zone,
  • Pollutants Reduction,
  • Greening strategies
A3P009: Other
A3P010: Legal / Regulatory aspects
A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (Renewable energy directive - 2018/2001/EU and Common rules for the internal electricity market directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.
B1P001: PED/PED relevant concept definition
B1P001: PED/PED relevant concept definition
B1P002: Motivation behind PED/PED relevant project development
B1P002: Motivation behind PED/PED relevant project development
B1P003: Environment of the case study area
B2P003: Environment of the case study areaRural
B1P004: Type of district
B2P004: Type of district
B1P005: Case Study Context
B1P005: Case Study Context
B1P006: Year of construction
B1P006: Year of construction
B1P007: District population before intervention - Residential
B1P007: District population before intervention - Residential
B1P008: District population after intervention - Residential
B1P008: District population after intervention - Residential
B1P009: District population before intervention - Non-residential
B1P009: District population before intervention - Non-residential
B1P010: District population after intervention - Non-residential
B1P010: District population after intervention - Non-residential
B1P011: Population density before intervention
B1P011: Population density before intervention0
B1P012: Population density after intervention
B1P012: Population density after intervention0
B1P013: Building and Land Use before intervention
B1P013: Residentialno
B1P013 - Residential: Specify the sqm [m²]
B1P013: Officeno
B1P013 - Office: Specify the sqm [m²]
B1P013: Industry and Utilityno
B1P013 - Industry and Utility: Specify the sqm [m²]
B1P013: Commercialno
B1P013 - Commercial: Specify the sqm [m²]
B1P013: Institutionalno
B1P013 - Institutional: Specify the sqm [m²]
B1P013: Natural areasno
B1P013 - Natural areas: Specify the sqm [m²]
B1P013: Recreationalno
B1P013 - Recreational: Specify the sqm [m²]
B1P013: Dismissed areasno
B1P013 - Dismissed areas: Specify the sqm [m²]
B1P013: Otherno
B1P013 - Other: Specify the sqm [m²]
B1P014: Building and Land Use after intervention
B1P014: Residentialno
B1P014 - Residential: Specify the sqm [m²]
B1P014: Officeno
B1P014 - Office: Specify the sqm [m²]
B1P014: Industry and Utilityno
B1P014 - Industry and Utility: Specify the sqm [m²]
B1P014: Commercialno
B1P014 - Commercial: Specify the sqm [m²]
B1P014: Institutionalno
B1P014 - Institutional: Specify the sqm [m²]
B1P014: Natural areasno
B1P014 - Natural areas: Specify the sqm [m²]
B1P014: Recreationalno
B1P014 - Recreational: Specify the sqm [m²]
B1P014: Dismissed areasno
B1P014 - Dismissed areas: Specify the sqm [m²]
B1P014: Otherno
B1P014 - Other: Specify the sqm [m²]
B2P001: PED Lab concept definition
B2P001: PED Lab concept definition
B2P002: Installation life time
B2P002: Installation life timeCEDER will follow an integrative approach including technology for a permanent installation.
B2P003: Scale of action
B2P003: ScaleDistrict
B2P004: Operator of the installation
B2P004: Operator of the installationCIEMAT. Data detail in contact: mariano.martin@ciemat.es and oscar.izquiedo@ciemat.es
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P006: Circular Economy Approach
B2P006: Do you apply any strategy to reuse and recycling the materials?No
B2P006: Other
B2P007: Motivation for developing the PED Lab
B2P007: Motivation for developing the PED Lab
  • Strategic
B2P007: Other
B2P008: Lead partner that manages the PED Lab
B2P008: Lead partner that manages the PED LabResearch center/University
B2P008: Other
B2P009: Collaborative partners that participate in the PED Lab
B2P009: Collaborative partners that participate in the PED Lab
  • Academia,
  • Industrial
B2P009: Other
B2P010: Synergies between the fields of activities
B2P010: Synergies between the fields of activitiesThe operation of the laboratory with all the components of the energy networks requires a collaborative work between various departments and entities. On the one hand, it is necessary to optimize the operation of renewable systems based on the weather conditions, forecast of the demand side and the flexibility of the generation systems. On the other hand, the optimization of the energy demands through a more sustainable behaviour of both the building and the users want to be acquired. For this, it is necessary to take into account technical aspects but also market, comfort and encourage the user participation, creating a decision-making matrix that allows optimizing the operation of the global system.
B2P011: Available facilities to test urban configurations in PED Lab
B2P011: Available facilities to test urban configurations in PED Lab
  • Buildings,
  • Demand-side management,
  • Prosumers,
  • Renewable generation,
  • Energy storage,
  • Energy networks,
  • Efficiency measures,
  • Information and Communication Technologies (ICT),
  • Ambient measures,
  • Social interactions
B2P011: Other
B2P012: Incubation capacities of PED Lab
B2P012: Incubation capacities of PED Lab
  • Monitoring and evaluation infrastructure,
  • Tools for prototyping and modelling
B2P013: Availability of the facilities for external people
B2P013: Availability of the facilities for external people
B2P014: Monitoring measures
B2P014: Monitoring measures
  • Equipment
B2P015: Key Performance indicators
B2P015: Key Performance indicators
  • Energy,
  • Environmental,
  • Economical / Financial
B2P016: Execution of operations
B2P016: Execution of operations
B2P017: Capacities
B2P017: Capacities- Innovative grid configuration to connect bio boilers and solar thermal on buildings. - Environmental & air quality evaluation. - Testing and evaluation of high efficient heating & cooling systems: Gas, biomass, geothermal and absorption H&C pumps … - Definition and implementation of the different regulation modes for the global system. Using the data from the research focused-partners, several regulation modes for the DH network could be defined and implemented in order to obtain an optimal operation of the network. - Innovation in MPC control to enable harvesting 100% renewables in the most efficient way. - Physical integration of the technologies with the existing facilities at the living lab. - Connection between the solar thermal collectors to achieve the lowest heat losses, providing the possibility to use the grid as high or low temperature DH, according to the demand schedule of the buildings. - Test the bio-boiler of the last generation and ultra-low emissions biomass condensing boiler in order to increase efficiency and reduce GHG and air pollutant emissions of the DH plant. - Control of the supply temperature of the DH grid to enable 100% renewables harvesting in the most efficient way. - Research of the incidence of a normal building or a bioclimatic building in the DH grid demand. - Methodologies for concept validation: Definition of the minimum requirements to verify the suitability of the solutions proposed. - Tests campaign: Experimental operation and characterization in a relevant environment, to exploit the technologies at their best and test different demand profiles, different configuration and loads, with real time monitoring and continuous commissioning to control the performance of the technology. - Validation and upgrading recommendation for the DH&C at district level. - Evaluation of innovation actions for potential energy interventions with demand response in buildings. - The complete available infrastructure (MV and LV electric systems, transformation hubs, end consumption, generation sources, communication elements, etc.) belongs to CEDER-CIEMAT, making this the perfect scenario to test and try the performance of “Smart Grid” and “Microgrid” projects. - The type of electric grid, its voltage levels (MV or LV), its variety of real loads (different buildings with different profiles: industrial buildings, offices and so on) and its sources of renewable generation and storage, mean it is ideal for intermediate tests between a small-scale laboratory and final deployment of the real product.
B2P018: Relations with stakeholders
B2P018: Relations with stakeholdersCEDER - CIEMAT is a public research body assigned to the Ministry of Science and Innovation under the General Secretariat for Research, focusing on energy and environment. To develop this lab CIEMAT has relations with private renewable companies, research centers and academia institutions.
B2P019: Available tools
B2P019: Available tools
  • Energy modelling
B2P019: Available tools
B2P020: External accessibility
B2P020: External accessibilityCIEMAT is a public body, so it´s open to any institution according the actual regulation and agreements.
C1P001: Unlocking Factors
C1P001: Recent technological improvements for on-site RES production2 - Slightly important
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important
C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important
C1P001: Storage systems and E-mobility market penetration2 - Slightly important
C1P001: Decreasing costs of innovative materials1 - Unimportant
C1P001: Financial mechanisms to reduce costs and maximize benefits1 - Unimportant
C1P001: The ability to predict Multiple Benefits3 - Moderately important
C1P001: The ability to predict the distribution of benefits and impacts4 - Important
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important
C1P001: Social acceptance (top-down)3 - Moderately important
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important
C1P001: Presence of integrated urban strategies and plans3 - Moderately important
C1P001: Multidisciplinary approaches available for systemic integration2 - Slightly important
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects5 - Very important
C1P001: Availability of RES on site (Local RES)5 - Very important
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important
C1P001: Any other UNLOCKING FACTORS1 - Unimportant
C1P001: Any other UNLOCKING FACTORS (if any)
C1P002: Driving Factors
C1P002: Climate Change adaptation need4 - Important
C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important
C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant
C1P002: Urban re-development of existing built environment5 - Very important
C1P002: Economic growth need3 - Moderately important
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important
C1P002: Territorial and market attractiveness3 - Moderately important
C1P002: Energy autonomy/independence4 - Important
C1P002: Any other DRIVING FACTOR1 - Unimportant
C1P002: Any other DRIVING FACTOR (if any)
C1P003: Administrative barriers
C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important
C1P003: Lack of good cooperation and acceptance among partners2 - Slightly important
C1P003: Lack of public participation1 - Unimportant
C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important
C1P003:Long and complex procedures for authorization of project activities5 - Very important
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important
C1P003: Complicated and non-comprehensive public procurement4 - Important
C1P003: Fragmented and or complex ownership structure5 - Very important
C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important
C1P003: Lack of internal capacities to support energy transition4 - Important
C1P003: Any other Administrative BARRIER1 - Unimportant
C1P003: Any other Administrative BARRIER (if any)
C1P004: Policy barriers
C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant
C1P004: Lacking or fragmented local political commitment and support on the long term2 - Slightly important
C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important
C1P004: Any other Political BARRIER1 - Unimportant
C1P004: Any other Political BARRIER (if any)
C1P005: Legal and Regulatory barriers
C1P005: Inadequate regulations for new technologies4 - Important
C1P005: Regulatory instability3 - Moderately important
C1P005: Non-effective regulations4 - Important
C1P005: Unfavorable local regulations for innovative technologies2 - Slightly important
C1P005: Building code and land-use planning hindering innovative technologies2 - Slightly important
C1P005: Insufficient or insecure financial incentives3 - Moderately important
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important
C1P005: Shortage of proven and tested solutions and examples2 - Slightly important
C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant
C1P005: Any other Legal and Regulatory BARRIER (if any)
C1P006: Environmental barriers
C1P006: Environmental barriers3 - Moderately important
C1P007: Technical barriers
C1P007: Lack of skilled and trained personnel1 - Unimportant
C1P007: Deficient planning2 - Slightly important
C1P007: Retrofitting work in dwellings in occupied state2 - Slightly important
C1P007: Lack of well-defined process2 - Slightly important
C1P007: Inaccuracy in energy modelling and simulation2 - Slightly important
C1P007: Lack/cost of computational scalability5 - Very important
C1P007: Grid congestion, grid instability5 - Very important
C1P007: Negative effects of project intervention on the natural environment5 - Very important
C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant
C1P007: Difficult definition of system boundaries2 - Slightly important
C1P007: Any other Thecnical BARRIER1 - Unimportant
C1P007: Any other Thecnical BARRIER (if any)
C1P008: Social and Cultural barriers
C1P008: Inertia2 - Slightly important
C1P008: Lack of values and interest in energy optimization measurements2 - Slightly important
C1P008: Low acceptance of new projects and technologies2 - Slightly important
C1P008: Difficulty of finding and engaging relevant actors3 - Moderately important
C1P008: Lack of trust beyond social network4 - Important
C1P008: Rebound effect2 - Slightly important
C1P008: Hostile or passive attitude towards environmentalism5 - Very important
C1P008: Exclusion of socially disadvantaged groups2 - Slightly important
C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important
C1P008: Hostile or passive attitude towards energy collaboration5 - Very important
C1P008: Any other Social BARRIER1 - Unimportant
C1P008: Any other Social BARRIER (if any)
C1P009: Information and Awareness barriers
C1P009: Insufficient information on the part of potential users and consumers2 - Slightly important
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts5 - Very important
C1P009: Lack of awareness among authorities4 - Important
C1P009: Information asymmetry causing power asymmetry of established actors2 - Slightly important
C1P009: High costs of design, material, construction, and installation4 - Important
C1P009: Any other Information and Awareness BARRIER1 - Unimportant
C1P009: Any other Information and Awareness BARRIER (if any)
C1P010: Financial barriers
C1P010: Hidden costs2 - Slightly important
C1P010: Insufficient external financial support and funding for project activities5 - Very important
C1P010: Economic crisis3 - Moderately important
C1P010: Risk and uncertainty2 - Slightly important
C1P010: Lack of consolidated and tested business models2 - Slightly important
C1P010: Limited access to capital and cost disincentives5 - Very important
C1P010: Any other Financial BARRIER1 - Unimportant
C1P010: Any other Financial BARRIER (if any)
C1P011: Market barriers
C1P011: Split incentives5 - Very important
C1P011: Energy price distortion5 - Very important
C1P011: Energy market concentration, gatekeeper actors (DSOs)2 - Slightly important
C1P011: Any other Market BARRIER1 - Unimportant
C1P011: Any other Market BARRIER (if any)
C1P012: Stakeholders involved
C1P012: Government/Public Authorities
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Research & Innovation
  • Design/demand aggregation
C1P012: Financial/Funding
  • None
C1P012: Analyst, ICT and Big Data
  • Monitoring/operation/management
C1P012: Business process management
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Urban Services providers
  • Planning/leading
C1P012: Real Estate developers
  • None
C1P012: Design/Construction companies
  • Construction/implementation
C1P012: End‐users/Occupants/Energy Citizens
  • Monitoring/operation/management
C1P012: Social/Civil Society/NGOs
  • None
C1P012: Industry/SME/eCommerce
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Other
C1P012: Other (if any)
Summary

Authors (framework concept)

Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

Contributors (to the content)

Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

Implemented by

Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)