Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Uncompare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Uncompare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Uncompare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Uncompare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleUden, Loopkantstraat
Savona, The University of Genova, Savona Campus
Izmir, District of Karşıyaka
Évora, Portugal
Groningen, PED North
City of Espoo, Espoonlahti district, Lippulaiva block
Măgurele, Laser Valley – Land of Lights
Pamplona
Vidin, Himik and Bononia
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabUden, LoopkantstraatSavona, The University of Genova, Savona CampusIzmir, District of KarşıyakaÉvora, PortugalGroningen, PED NorthCity of Espoo, Espoonlahti district, Lippulaiva blockMăgurele, Laser Valley – Land of LightsPamplonaVidin, Himik and Bononia
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesnonoyesyesnoyes
PED relevant case studyyesnonoyesnonononono
PED Lab.noyesnoyesyesnonoyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesnoyesnoyesyesyes
Annual energy surplusyesnoyesyesyesnononoyes
Energy communitynoyesnoyesyesnonoyesno
Circularitynonononoyesnononono
Air quality and urban comfortnonoyesnononononono
Electrificationyesnononononononono
Net-zero energy costnonoyesnononononono
Net-zero emissionnonononoyesnoyesnono
Self-sufficiency (energy autonomous)nonononononononono
Maximise self-sufficiencynonoyesnonoyesnonono
Othernoyesnonononoyesnono
Other (A1P004)The case study can be representative as a small-scale district with multi-vector energy systemsEnergy efficient; Sustainable neighbourhood; Social aspects/affordability
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabIn operationIn operationPlanning PhaseImplementation PhaseImplementation PhaseIn operationIn operationImplementation PhasePlanning Phase
A1P006: Start Date
A1P006: Start date06/1702/1410/2210/1912/1806/1806/2412/18
A1P007: End Date
A1P007: End date05/2310/2509/2412/2303/2207/2812/30
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • General statistical datasets
A1P009: OtherOther
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
  • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
  • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
  • https://www.synikia.eu/no/bibliotek/
    • TNO, Hanze, RUG,
    • Ped noord book
    • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
    • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf,
    • www.lippulaiva.fi
        A1P011: Geographic coordinates
        X Coordinate (longitude):5.61918.45236071159282627.110049-7.9093776.53512124.654326.021826-1.6432322.8826
        Y Coordinate (latitude):51.660644.2990045129586138.49605438.57080453.23484660.149144.29987442.8168743.9936
        A1P012: Country
        A1P012: CountryNetherlandsItalyTurkeyPortugalNetherlandsFinlandRomaniaSpainBulgaria
        A1P013: City
        A1P013: CityUdenSavonaİzmirÉvoraGroningenEspooMăgurelePamplonaVidin
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CfbCsaCsaCsaCfaDfbCfaCfbCfa
        A1P015: District boundary
        A1P015: District boundaryGeographicGeographicGeographicGeographicFunctionalGeographicGeographicGeographic
        Other
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:PrivateMixedPrivateMixedMixedPrivateMixedMixedMixed
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Single OwnerSingle OwnerMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersMultiple Owners
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED1217974
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]23601027951.0111200098759.53
        A1P020: Total ground area
        A1P020: Total ground area [m²]3860600003260017.13216500023550000195234.80
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area103001001
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estateyesnononoyesyesnonono
        A1P022a: Add the value in EUR if available [EUR]7804440
        A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernonononoyesnononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnonononononononono
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingnoyesnonoyesnononoyes
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingnonononononononono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnonononoyesnonoyesno
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernonononononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnonoyesyesyesyesnonono
        A1P022i: Add the value in EUR if available [EUR]119335519998275308875
        A1P022j: Financing - RESEARCH FUNDING - Nationalnonoyesnononononono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernonononononoyesnono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: OtherBusiness angels
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Positive externalities,
        • Boosting local and sustainable production
        • Boosting local businesses,
        • Boosting local and sustainable production
        • Job creation,
        • Positive externalities,
        • Boosting local businesses
        • Job creation
        A1P023: Other
        A1P024: More comments:
        A1P024: More comments:The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVs
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]78044405.4
        Contact person for general enquiries
        A1P026: NameTonje Healey TrulsrudMichela RobbaOzlem SenyolJoão Bravo DiasJasper Tonen, Elisabeth KoopsElina EkelundChristoph GollnerOscar Puyal LAtorreDaniela Kostova
        A1P027: OrganizationNorwegian University of Science and Technology (NTNU)University of GenovaKarsiyaka MunicipalityEDP LabelecMunicipality of GroningenCitycon OyjFFgEndef Engineering SLGreen Synergy Cluster
        A1P028: AffiliationResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesSME / IndustryMunicipality / Public BodiesSME / IndustryOtherSME / IndustryOther
        A1P028: OtherCluster
        A1P029: Emailtonje.h.trulsrud@ntnu.noMichela.robba@unige.itozlemkocaer2@gmail.comjoao.bravodias@edp.ptJasper.tonen@groningen.nlElina.ekelund@citycon.comchritoph.gollner@ffg.atoscar.puyal@endef.comdaniela@greensynergycluster.eu
        Contact person for other special topics
        A1P030: NameYassine EnnassiriHasan Burak CavkaElina Ekelund
        A1P031: EmailYassine.ennassiri@edu.unige.ithasancavka@iyte.edu.trElina.ekelund@citycon.com
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Waste management,
        • Indoor air quality,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Urban comfort (pollution, heat island, noise level etc.)
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Waste management,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Waste management
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy production
        • Energy efficiency
        • Energy efficiency,
        • Energy production
        A2P001: Other
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materialsMethods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.Energy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsEnergy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider Electric
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000YesYesNoNoYesNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceNoYesYesNoYesNo
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoNoYesNoNoYes
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationnot includedMobility is not included in the calculations.Mobility, till now, is not included in the energy model.Mobility is not included in the energy model.
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.1481.4263.8622.35.5
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.1090.9621.2260.335.8
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesnoyesnonoyesnonono
        A2P011: PV - specify production in GWh/annum [GWh/annum]0.0581.0280.54
        A2P011: Windnonononononononono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydrononononononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnonononononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnonononononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnonononononononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernonononononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalyesnononoyesyesnonono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]5
        A2P012: Solar Thermalnonononoyesnononono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatnonononoyesnononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
        A2P012: Waste heat+HPnonononoyesnononono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_peat_heatnonononononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnonononoyesnononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnonononononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernonononononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notes*Annual energy use below is presentedin primary energy consumptionGeothermal heatpump systems, Waste heat from data centers
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]0.1945.08811.3
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]0.03685.76
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnonoyesnononononono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]0
        A2P017: Coalnonononononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]0
        A2P017: Oilnonononononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]0
        A2P017: Othernonononononononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnonoyesnononononono
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.707
        A2P018: Windnonononononononono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydrononononononononono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnonononononononono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnonononononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnonononononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernononononoyesnonono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]5.26
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnonononononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnonononononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnonononononononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnonononononononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnonononononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnonononononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnonononononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernonononononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary001.4540311173975001.0532319391635000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]-0.000430
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & SecurityPersonal Safety
        A2P022: HealthHealthy community
        A2P022: Education
        A2P022: MobilitySustainable mobility
        A2P022: EnergyNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emissionCost of energy; emissions linked to energy productionOn-site energy ratio
        A2P022: Water
        A2P022: Economic developmentcapital costs, operational cots, overall economic performance (5 KPIs)
        A2P022: Housing and Communitydemographic composition, diverse community, social cohesionNumber of people interested in participating in an energy community
        A2P022: Waste
        A2P022: OtherSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsyesyesyesyesyesyesnoyesyes
        A2P023: Solar thermal collectorsnoyesnoyesyesnoyesnono
        A2P023: Wind Turbinesnonononononononono
        A2P023: Geothermal energy systemyesyesnonoyesyesyesnoyes
        A2P023: Waste heat recoverynonononoyesyesnonono
        A2P023: Waste to energynonononoyesnononono
        A2P023: Polygenerationnoyesnonononononono
        A2P023: Co-generationnonononononononono
        A2P023: Heat Pumpyesnoyesnoyesnononoyes
        A2P023: Hydrogennoyesnonononononono
        A2P023: Hydropower plantnonononononononono
        A2P023: Biomassnonononononononono
        A2P023: Biogasnonononononononono
        A2P023: Other
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)noyesnoyesyesyesnonono
        A2P024: Energy management systemyesyesnoyesyesyesnonono
        A2P024: Demand-side managementyesnononoyesnononono
        A2P024: Smart electricity gridnoyesnoyesnoyesnonono
        A2P024: Thermal Storagenoyesnoyesyesyesnonono
        A2P024: Electric Storagenoyesnoyesyesyesnonoyes
        A2P024: District Heating and Coolingnoyesnonoyesnoyesnono
        A2P024: Smart metering and demand-responsive control systemsyesyesnoyesyesnonoyesno
        A2P024: P2P – buildingsnononoyesnonononono
        A2P024: Other
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnonoyesnononononoyes
        A2P025: Energy efficiency measures in historic buildingsnononoyesyesnononono
        A2P025: High-performance new buildingsyesyesnonoyesyesnonono
        A2P025: Smart Public infrastructure (e.g. smart lighting)nonononoyesyesnonono
        A2P025: Urban data platformsnononoyesyesnononono
        A2P025: Mobile applications for citizensnononoyesnonononono
        A2P025: Building services (HVAC & Lighting)yesnoyesyesnoyesnonono
        A2P025: Smart irrigationnonononononononono
        A2P025: Digital tracking for waste disposalnononoyesnonononono
        A2P025: Smart surveillancenononoyesnononoyesno
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)nonononononononono
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononononoyesnonono
        A2P026: e-Mobilitynoyesnoyesyesyesnonono
        A2P026: Soft mobility infrastructures and last mile solutionsnononoyesnonononono
        A2P026: Car-free areanonononononononono
        A2P026: OtherLocal transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notes
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesNoNoYesYes
        A2P028: If yes, please specify and/or enter notesEPC = 0, energy neutral buildingEnergy Performance CertificateEnergy Performance Certificate => Energy efficiency class B (2018 version)
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNoNoYes
        A2P029: If yes, please specify and/or enter notesLEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD)
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies,
        • Urban Renewal Strategies,
        • Energy master planning (SECAP, etc.)
        • Energy master planning (SECAP, etc.),
        • New development strategies
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyKarşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.Relevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels.
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods,
        • Biogas
        A3P003: Other
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesAccording to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.- Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district.
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.For Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Demand management Living Lab
        • Innovative business models,
        • Blockchain
        • Innovative business models
        A3P006: Other
        A3P007: Social models
        A3P007: Social models
        • Co-creation / Citizen engagement strategies,
        • Social incentives,
        • Quality of Life
        • Co-creation / Citizen engagement strategies
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Affordability
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Citizen Social Research,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance
        • Co-creation / Citizen engagement strategies
        • Co-creation / Citizen engagement strategies
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Quality of Life,
        • Prevention of energy poverty
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • District Energy plans
        • Digital twinning and visual 3D models,
        • District Energy plans,
        • SECAP Updates
        • Strategic urban planning,
        • District Energy plans,
        • City Vision 2050,
        • SECAP Updates
        • Building / district Certification
        • Strategic urban planning,
        • City Vision 2050,
        • SECAP Updates
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Low Emission Zone
        • Energy Neutral,
        • Low Emission Zone,
        • Pollutants Reduction
        • Energy Neutral
        • Other
        • Greening strategies
        • Pollutants Reduction,
        • Greening strategies
        A3P009: OtherCarbon free in terms of energy
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity- Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionThe demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.The pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).The PED main objective is to achieve the energy transition while preserving cultural heritage and improving citizen’s quality of life.Lippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentThe need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.POCITYF brings together eight cities (Lightouse and Fellow cities), all having cultural heritage areas in their territory. All are intrinsically motivated to participate in the necessary energy transition not only for their conventional city districts of mixed-used, but also for districts with individually specificities as those belonging in their cultural heritage, which at the moment may be acting as barriers for their further environmental sustainability, but after POCITYF will be acting as a promising building retrofits roadmap for similar and other EU cities.- Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholders
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaSuburban areaUrban areaUrban areaUrban areaUrban area
        B1P004: Type of district
        B2P004: Type of district
        • New construction
        • Renovation
        • Renovation
        • New construction
        • New construction,
        • Renovation
        • Renovation
        B1P005: Case Study Context
        B1P005: Case Study Context
        • New Development
        • Retrofitting Area
        • Preservation Area
        • Re-use / Transformation Area,
        • New Development
        • Re-use / Transformation Area,
        • New Development
        • Retrofitting Area
        B1P006: Year of construction
        B1P006: Year of construction20052022
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P011: Population density before intervention
        B1P011: Population density before intervention00000000
        B1P012: Population density after intervention
        B1P012: Population density after intervention00000000
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnonoyesnononononoyes
        B1P013 - Residential: Specify the sqm [m²]10279564 787,57
        B1P013: Officenonononononononono
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynonononononononono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnononononoyesnonoyes
        B1P013 - Commercial: Specify the sqm [m²]262,33
        B1P013: Institutionalnonononononononono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasnononononoyesnonono
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnonononononononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnonononononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernonononononononono
        B1P013 - Other: Specify the sqm [m²]
        B1P014: Building and Land Use after intervention
        B1P014: Residentialyesnoyesnonoyesyesnono
        B1P014 - Residential: Specify the sqm [m²]2394102795
        B1P014: Officenonononononoyesnono
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynonononononoyesnono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnononononoyesnonono
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnonononononononoyes
        B1P014 - Institutional: Specify the sqm [m²]35322.21
        B1P014: Natural areasnonononononoyesnono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnonononononoyesnono
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnonononononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernonononononononono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
        B2P002: Installation life time
        B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
        B2P003: Scale of action
        B2P003: ScaleDistrictDistrictCity
        B2P004: Operator of the installation
        B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?No
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Civic
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabMunicipality
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        • Academia,
        • Private,
        • Industrial,
        • Other
        B2P009: Otherresearch companies, monitoring company, ict company
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Buildings,
        • Demand-side management,
        • Prosumers,
        • Renewable generation,
        • Energy storage,
        • Energy networks,
        • Waste management,
        • E-mobility,
        • Social interactions,
        • Circular economy models
        • Buildings,
        • Demand-side management,
        • Energy storage,
        • Energy networks,
        • Waste management,
        • Lighting,
        • E-mobility,
        • Information and Communication Technologies (ICT),
        • Social interactions,
        • Business models
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Monitoring and evaluation infrastructure,
        • Tools for prototyping and modelling,
        • Tools, spaces, events for testing and validation
        • Tools for prototyping and modelling
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        • Execution plan,
        • Available data,
        • Type of measured data,
        • Equipment,
        • Level of access
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy
        • Energy,
        • Social,
        • Economical / Financial
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        • Energy modelling,
        • Social models,
        • Business and financial models
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production3 - Moderately important4 - Important5 - Very important4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant2 - Slightly important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important3 - Moderately important
        C1P001: Storage systems and E-mobility market penetration4 - Important4 - Important1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important
        C1P001: Decreasing costs of innovative materials4 - Important1 - Unimportant5 - Very important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important
        C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important4 - Important4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important
        C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important4 - Important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important4 - Important4 - Important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant5 - Very important5 - Very important
        C1P001: Social acceptance (top-down)5 - Very important3 - Moderately important5 - Very important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important4 - Important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important1 - Unimportant5 - Very important4 - Important4 - Important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important
        C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
        C1P001: Multidisciplinary approaches available for systemic integration5 - Very important5 - Very important4 - Important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important5 - Very important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant3 - Moderately important5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
        C1P001: Availability of RES on site (Local RES)5 - Very important3 - Moderately important5 - Very important3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important4 - Important5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need5 - Very important4 - Important5 - Very important5 - Very important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important4 - Important
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important5 - Very important4 - Important3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important
        C1P002: Rapid urbanization trend and need of urban expansions5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P002: Urban re-development of existing built environment4 - Important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P002: Economic growth need1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)5 - Very important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
        C1P002: Territorial and market attractiveness2 - Slightly important3 - Moderately important5 - Very important3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important
        C1P002: Energy autonomy/independence1 - Unimportant4 - Important5 - Very important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant2 - Slightly important4 - Important5 - Very important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important
        C1P003: Lack of public participation1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
        C1P003: Lack of institutions/mechanisms to disseminate information1 - Unimportant2 - Slightly important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
        C1P003:Long and complex procedures for authorization of project activities1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P003: Complicated and non-comprehensive public procurement1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
        C1P003: Fragmented and or complex ownership structure1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant2 - Slightly important5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003: Lack of internal capacities to support energy transition1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important
        C1P003: Any other Administrative BARRIER4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important
        C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
        C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies1 - Unimportant2 - Slightly important5 - Very important5 - Very important4 - Important2 - Slightly important1 - Unimportant4 - Important5 - Very important
        C1P005: Regulatory instability1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important5 - Very important
        C1P005: Non-effective regulations1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important4 - Important
        C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant2 - Slightly important5 - Very important5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important
        C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant2 - Slightly important5 - Very important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P005: Insufficient or insecure financial incentives1 - Unimportant2 - Slightly important4 - Important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important
        C1P005: Shortage of proven and tested solutions and examples1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important4 - Important4 - Important1 - Unimportant4 - Important5 - Very important
        C1P007: Deficient planning1 - Unimportant1 - Unimportant4 - Important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant1 - Unimportant5 - Very important5 - Very important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant5 - Very important
        C1P007: Lack of well-defined process1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important
        C1P007: Inaccuracy in energy modelling and simulation1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important
        C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
        C1P007: Grid congestion, grid instability1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
        C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important
        C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important
        C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia1 - Unimportant4 - Important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
        C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important
        C1P008: Low acceptance of new projects and technologies1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
        C1P008: Difficulty of finding and engaging relevant actors1 - Unimportant3 - Moderately important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important4 - Important
        C1P008: Lack of trust beyond social network1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
        C1P008: Rebound effect1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important2 - Slightly important
        C1P008: Exclusion of socially disadvantaged groups1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
        C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant2 - Slightly important4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important5 - Very important
        C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant2 - Slightly important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important5 - Very important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
        C1P009: Lack of awareness among authorities1 - Unimportant3 - Moderately important4 - Important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important5 - Very important
        C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant2 - Slightly important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important
        C1P009: High costs of design, material, construction, and installation1 - Unimportant3 - Moderately important5 - Very important4 - Important4 - Important4 - Important1 - Unimportant4 - Important5 - Very important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs1 - Unimportant3 - Moderately important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important
        C1P010: Insufficient external financial support and funding for project activities1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important5 - Very important
        C1P010: Economic crisis1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important5 - Very important
        C1P010: Risk and uncertainty5 - Very important3 - Moderately important4 - Important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
        C1P010: Lack of consolidated and tested business models1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important5 - Very important
        C1P010: Limited access to capital and cost disincentives1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
        C1P011: Energy price distortion1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
        C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading,
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading,
        • Monitoring/operation/management
        C1P012: Research & Innovation
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation
        • None
        C1P012: Financial/Funding
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Analyst, ICT and Big Data
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • None
        C1P012: Business process management
        • Planning/leading
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • None
        C1P012: Urban Services providers
        • Design/demand aggregation,
        • Monitoring/operation/management
        • None
        C1P012: Real Estate developers
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Design/Construction companies
        • Planning/leading,
        • Design/demand aggregation
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: End‐users/Occupants/Energy Citizens
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Construction/implementation
        C1P012: Social/Civil Society/NGOs
        • Planning/leading,
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Design/demand aggregation
        C1P012: Industry/SME/eCommerce
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: Other
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)