Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Uncompare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Uncompare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleUden, Loopkantstraat
Lublin
Barcelona, SEILAB & Energy SmartLab
Jacobs Borchs Gate, Drammen
Borlänge, Rymdgatan’s Residential Portfolio
Aveiro, Portugal
City of Espoo, Espoonlahti district, Lippulaiva block
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabUden, LoopkantstraatLublinBarcelona, SEILAB & Energy SmartLabJacobs Borchs Gate, DrammenBorlänge, Rymdgatan’s Residential PortfolioAveiro, PortugalCity of Espoo, Espoonlahti district, Lippulaiva block
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnonononoyes
PED relevant case studyyesnonoyesyesyesno
PED Lab.nonoyesnononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesnoyesyesyesno
Annual energy surplusyesyesnonoyesnono
Energy communitynoyesyesnoyesyesno
Circularitynoyesnonononono
Air quality and urban comfortnoyesnonononono
Electrificationyesnoyesnoyesyesno
Net-zero energy costnoyesnonononono
Net-zero emissionnoyesyesyesnonono
Self-sufficiency (energy autonomous)noyesyesnononono
Maximise self-sufficiencynoyesnonoyesnoyes
Othernonoyesyesnonono
Other (A1P004)Green ITEnergy efficient; Carbon-free; A drive for both non fossil fuel and non-greenhouse gas working fluids plus maximum efficiency led to deploying ammonia fjord source heat pumps
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabIn operationPlanning PhaseIn operationCompletedPlanning PhasePlanning PhaseIn operation
A1P006: Start Date
A1P006: Start date06/1701/201101/0912/2306/18
A1P007: End Date
A1P007: End date05/2302/201312/1211/2603/22
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets,
  • GIS open datasets,
  • Vehicle registration datasets
  • General statistical datasets
  • Open data city platform – different dashboards
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
  • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
  • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
  • https://www.synikia.eu/no/bibliotek/
      • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
      • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf,
      • www.lippulaiva.fi
      A1P011: Geographic coordinates
      X Coordinate (longitude):5.619122.56842.110.23060315.394495-8.659524.6543
      Y Coordinate (latitude):51.660651.246541.359.74133460.48660940.635360.1491
      A1P012: Country
      A1P012: CountryNetherlandsPolandSpainNorwaySwedenPortugalFinland
      A1P013: City
      A1P013: CityUdenLublinBarcelona and TarragonaDrammenBorlängeAlveiro (Aradas)Espoo
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).CfbCfbCsaDfbDsbCsbDfb
      A1P015: District boundary
      A1P015: District boundaryGeographicGeographicVirtualGeographicGeographicGeographic
      Other
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:PrivatePrivatePublicPrivateMixedPublicPrivate
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersSingle OwnerSingle OwnerSingle OwnerMultiple OwnersSingle Owner
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED150109
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]236021664.733700112000
      A1P020: Total ground area
      A1P020: Total ground area [m²]386072833.47100099458930000165000
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area1000001
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estateyesnononononoyes
      A1P022a: Add the value in EUR if available [EUR]7804440
      A1P022b: Financing - PRIVATE - ESCO schemenonononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernononoyesnonono
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnonononononono
      A1P022d: Add the value in EUR if available [EUR]
      A1P022e: Financing - PUBLIC - National fundingnononononoyesno
      A1P022e: Add the value in EUR if available [EUR]
      A1P022f: Financing - PUBLIC - Regional fundingnonononononono
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingnonononononono
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernonononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUnonononononoyes
      A1P022i: Add the value in EUR if available [EUR]308875
      A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononono
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: Other
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Job creation,
      • Positive externalities,
      • Boosting local businesses,
      • Boosting local and sustainable production,
      • Boosting consumption of local and sustainable products
      • Job creation,
      • Boosting local and sustainable production
      • Positive externalities,
      • Boosting local businesses,
      • Boosting consumption of local and sustainable products
      • Job creation,
      • Positive externalities,
      • Boosting local businesses
      A1P023: Other
      A1P024: More comments:
      A1P024: More comments:The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.Lublin PED Area is geographically bounded and the ambition is to reach Self-Sufficiency. There is a shopping centre with a large rooftop area for solar generation and there are also an empty lot (just on the east side of the building) and a carpark area (on the north side) next to the commercial centre. These areas can also be evaluated for on-site (on the ground – or canopies for cars) energy generation. There are also new built (mainly in 2012) residential blocks with high efficiency and this district is so-called an “eco-district”. Thanks to the District Heating Grid (DHN), all buildings are connected to each other the network has potential for sharing mechanisms in the PED Area. Another opportunity for renewable energy is that these buildings are connected to more or less the end point of DHN and for this reason, a waste heat potential from the return pipe may also be considered. There are also small size residentials, that are not connected to the DHN, around the PED area and this enlightened the technical team for exporting energy from PED to these areas with a new infrastructure.Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVs
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]7804440
      Contact person for general enquiries
      A1P026: NameTonje Healey TrulsrudDorota Wolińska-PietrzakDr. Jaume Salom, Dra. Cristina CorcheroChristoph GollnerJingchun ShenDr. Gonçalo Homem De Almeida Rodriguez CorreiaElina Ekelund
      A1P027: OrganizationNorwegian University of Science and Technology (NTNU)Lublin MunicipalityIRECFFGHögskolan DalarnaDelft University of TechnologyCitycon Oyj
      A1P028: AffiliationResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityOtherResearch Center / UniversityResearch Center / UniversitySME / Industry
      A1P028: Other
      A1P029: Emailtonje.h.trulsrud@ntnu.nodwolinska@lublin.euJsalom@irec.catchristoph.gollner@ffg.atjih@du.seg.correia@tudelft.nlElina.ekelund@citycon.com
      Contact person for other special topics
      A1P030: NameXingxing ZhangQiaochu FanElina Ekelund
      A1P031: Emailxza@du.seq.fan-1@tudelft.nlElina.ekelund@citycon.com
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • Waste management,
      • Indoor air quality,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materialsSEE: D4.1 - Methodology and Guidelines for PED design https://makingcity.eu/results/#1551708358627-aefa76ef-66b2Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)Load calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMEnergy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider Electric
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000YesNoNoYes
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceNoYesYesYesYes
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoNoYesNoNo
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationnot included– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhMobility is not included in the energy model.
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.1480.67775.5
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.1090.036565.8
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]0
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesnoyesnononoyes
      A2P011: PV - specify production in GWh/annum [GWh/annum]0.0580.54
      A2P011: Windnonononononono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydrononononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnonononononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnonononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnonononoyesnono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
      A2P011: Othernonononononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalyesnononononoyes
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]5
      A2P012: Solar Thermalnonononononono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_heatnonononononono
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: Waste heat+HPnonononononono
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_peat_heatnonononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnonononoyesnono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
      A2P012: Biomass_firewood_thnonononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernonononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notes*Annual energy use below is presentedin primary energy consumption
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]0.1940.31811.3
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]0.03680.20555.76
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnonoyesnononono
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]0
      A2P017: Coalnonononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]0
      A2P017: Oilnonononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]0
      A2P017: Othernonononoyesnono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnonononononono
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
      A2P018: Windnonononononono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydrononononononono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnonononononono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnonononononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnonononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernonononoyesnoyes
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.1875.26
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnonononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnonononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnonononononono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnonononononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnonononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnonononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnonononononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernonononoyesnono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary00000.5383957219251301.0532319391635
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]-0.000436.930
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & SecurityPersonal Safetynone
      A2P022: HealthHealthy communitythermal comfort diagram
      A2P022: Educationnone
      A2P022: MobilitySustainable mobilitynoneImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districts
      A2P022: EnergyNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emissionnormalized CO2/GHG & Energy intensityTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stabilityOn-site energy ratio
      A2P022: Water
      A2P022: Economic developmentcapital costs, operational cots, overall economic performance (5 KPIs)cost of excess emissionsDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resilience
      A2P022: Housing and Communitydemographic composition, diverse community, social cohesion
      A2P022: Waste
      A2P022: OtherSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsyesyesyesnoyesyesyes
      A2P023: Solar thermal collectorsnonononoyesnono
      A2P023: Wind Turbinesnononononoyesno
      A2P023: Geothermal energy systemyesnononoyesnoyes
      A2P023: Waste heat recoverynonononoyesnoyes
      A2P023: Waste to energynonononononono
      A2P023: Polygenerationnonononononono
      A2P023: Co-generationnonononononono
      A2P023: Heat Pumpyesyesnoyesyesnono
      A2P023: Hydrogennoyesnonononono
      A2P023: Hydropower plantnonononononono
      A2P023: Biomassnonononononono
      A2P023: Biogasnonononononono
      A2P023: Other
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesnoyesnoyes
      A2P024: Energy management systemyesyesyesnonoyesyes
      A2P024: Demand-side managementyesyesnononoyesno
      A2P024: Smart electricity gridnoyesyesnonoyesyes
      A2P024: Thermal Storagenoyesnonoyesnoyes
      A2P024: Electric Storagenoyesyesnonoyesyes
      A2P024: District Heating and Coolingnoyesnoyesyesnono
      A2P024: Smart metering and demand-responsive control systemsyesyesnonononono
      A2P024: P2P – buildingsnonononononono
      A2P024: Other
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnoyesnonoyesyesno
      A2P025: Energy efficiency measures in historic buildingsnoyesnonononono
      A2P025: High-performance new buildingsyesyesnonononoyes
      A2P025: Smart Public infrastructure (e.g. smart lighting)noyesnononoyesyes
      A2P025: Urban data platformsnoyesnononoyesno
      A2P025: Mobile applications for citizensnoyesnonononono
      A2P025: Building services (HVAC & Lighting)yesyesyesnoyesnoyes
      A2P025: Smart irrigationnonononononono
      A2P025: Digital tracking for waste disposalnonononononono
      A2P025: Smart surveillancenonononononono
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)noyesyesnonoyesno
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesnononoyesyes
      A2P026: e-Mobilitynoyesnononoyesyes
      A2P026: Soft mobility infrastructures and last mile solutionsnonononononono
      A2P026: Car-free areanonononononono
      A2P026: OtherLocal transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notes
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesYesNoNoYes
      A2P028: If yes, please specify and/or enter notesEPC = 0, energy neutral buildingEnergy Performance Certificate => Energy efficiency class B (2018 version)
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoNoNoYes
      A2P029: If yes, please specify and/or enter notesLEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD)
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Smart cities strategies,
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • New development strategies
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.Relevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels.
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Electrification of Heating System based on Heat Pumps,
      • Other
      • Electrification of Heating System based on Heat Pumps
      A3P003: OtherHeating Grid
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and priorities-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.In our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.- Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district.
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviour-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.For Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Demand management Living Lab
      • Open data business models,
      • Life Cycle Cost,
      • Circular economy models,
      • Local trading
      • Innovative business models,
      • Local trading,
      • Existing incentives
      • Innovative business models
      A3P006: Other
      A3P007: Social models
      A3P007: Social models
      • Co-creation / Citizen engagement strategies,
      • Social incentives,
      • Quality of Life
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies
      • Digital Inclusion,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Behavioural Change / End-users engagement,
      • Social incentives,
      • Affordability,
      • Digital Inclusion
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Social incentives,
      • Prevention of energy poverty,
      • Digital Inclusion
      • Co-creation / Citizen engagement strategies
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans,
      • Building / district Certification
      • Strategic urban planning,
      • District Energy plans
      • Building / district Certification
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Energy Neutral,
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Carbon-free,
      • Life Cycle approach,
      • Greening strategies,
      • Nature Based Solutions (NBS)
      • Energy Neutral,
      • Low Emission Zone,
      • Pollutants Reduction,
      • Greening strategies
      • Energy Neutral,
      • Carbon-free
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Life Cycle approach,
      • Sustainable Urban drainage systems (SUDS)
      • Energy Neutral,
      • Low Emission Zone,
      • Nature Based Solutions (NBS)
      • Other
      A3P009: OtherCarbon free in terms of energy
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.- Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionThe demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.Lippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentThe need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.Borlänge city has committed to become the carbon-neutral city by 2030.- Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholders
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaSuburban areaSuburban areaUrban areaUrban area
      B1P004: Type of district
      B2P004: Type of district
      • New construction
      • Renovation
      • Renovation
      • New construction
      B1P005: Case Study Context
      B1P005: Case Study Context
      • New Development
      • Retrofitting Area
      • Re-use / Transformation Area,
      • Retrofitting Area
      • Re-use / Transformation Area,
      • New Development
      B1P006: Year of construction
      B1P006: Year of construction19902022
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential100
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential100
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential6
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential6
      B1P011: Population density before intervention
      B1P011: Population density before intervention0000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention00000.01065862242332800
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnonononoyesnono
      B1P013 - Residential: Specify the sqm [m²]4360
      B1P013: Officenonononononono
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynonononononono
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialnonononononoyes
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnonononononono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasnonononononoyes
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalnonononononono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnonononononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernonononoyesnono
      B1P013 - Other: Specify the sqm [m²]706
      B1P014: Building and Land Use after intervention
      B1P014: Residentialyesnononoyesnoyes
      B1P014 - Residential: Specify the sqm [m²]23944360
      B1P014: Officenonononononono
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynonononononono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnonononononoyes
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnonononononono
      B1P014 - Institutional: Specify the sqm [m²]
      B1P014: Natural areasnonononononono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnonononononono
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnonononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernonononoyesnono
      B1P014 - Other: Specify the sqm [m²]706
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
      B2P002: Installation life time
      B2P002: Installation life time
      B2P003: Scale of action
      B2P003: ScaleDistrictVirtualDistrict
      B2P004: Operator of the installation
      B2P004: Operator of the installationIREC
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?YesNo
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Strategic
      • Strategic,
      • Private
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabMunicipalityResearch center/University
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Citizens, public, NGO
      B2P009: Other
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Buildings,
      • Demand-side management,
      • Prosumers,
      • Renewable generation,
      • Efficiency measures,
      • Waste management,
      • Water treatment,
      • Lighting,
      • E-mobility,
      • Green areas,
      • Circular economy models
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Efficiency measures,
      • Information and Communication Technologies (ICT)
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Monitoring and evaluation infrastructure
      • Monitoring and evaluation infrastructure,
      • Tools for prototyping and modelling,
      • Tools, spaces, events for testing and validation
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Available data
      • Equipment
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy
      • Energy,
      • Environmental
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholders
      B2P019: Available tools
      B2P019: Available tools
      • Energy modelling
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant
      C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important4 - Important
      C1P001: Storage systems and E-mobility market penetration4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important4 - Important
      C1P001: Decreasing costs of innovative materials4 - Important5 - Very important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
      C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important5 - Very important
      C1P001: The ability to predict Multiple Benefits3 - Moderately important5 - Very important4 - Important1 - Unimportant4 - Important4 - Important4 - Important
      C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important5 - Very important4 - Important1 - Unimportant4 - Important4 - Important4 - Important
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important
      C1P001: Social acceptance (top-down)5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important2 - Slightly important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important2 - Slightly important
      C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant
      C1P001: Multidisciplinary approaches available for systemic integration5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant
      C1P001: Availability of RES on site (Local RES)5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important5 - Very important5 - Very important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important
      C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important
      C1P002: Rapid urbanization trend and need of urban expansions5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
      C1P002: Urban re-development of existing built environment4 - Important5 - Very important4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant
      C1P002: Economic growth need1 - Unimportant5 - Very important4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
      C1P002: Territorial and market attractiveness2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
      C1P002: Energy autonomy/independence1 - Unimportant5 - Very important5 - Very important1 - Unimportant2 - Slightly important5 - Very important4 - Important
      C1P002: Any other DRIVING FACTOR1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant5 - Very important4 - Important1 - Unimportant4 - Important4 - Important4 - Important
      C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important
      C1P003: Lack of public participation1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant
      C1P003: Lack of institutions/mechanisms to disseminate information1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
      C1P003:Long and complex procedures for authorization of project activities1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
      C1P003: Complicated and non-comprehensive public procurement1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
      C1P003: Fragmented and or complex ownership structure1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
      C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
      C1P003: Lack of internal capacities to support energy transition1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important4 - Important2 - Slightly important
      C1P003: Any other Administrative BARRIER4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant
      C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant
      C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant
      C1P004: Any other Political BARRIER1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important5 - Very important2 - Slightly important
      C1P005: Regulatory instability1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important
      C1P005: Non-effective regulations1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important
      C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant5 - Very important4 - Important1 - Unimportant4 - Important4 - Important2 - Slightly important
      C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important2 - Slightly important
      C1P005: Insufficient or insecure financial incentives1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
      C1P005: Shortage of proven and tested solutions and examples1 - Unimportant5 - Very important4 - Important1 - Unimportant4 - Important4 - Important3 - Moderately important
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriers2 - Slightly important
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important4 - Important
      C1P007: Deficient planning1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant
      C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important4 - Important
      C1P007: Lack of well-defined process1 - Unimportant1 - Unimportant4 - Important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
      C1P007: Inaccuracy in energy modelling and simulation1 - Unimportant5 - Very important5 - Very important1 - Unimportant2 - Slightly important4 - Important2 - Slightly important
      C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
      C1P007: Grid congestion, grid instability1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
      C1P007: Negative effects of project intervention on the natural environment1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Difficult definition of system boundaries1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Any other Thecnical BARRIER1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia1 - Unimportant5 - Very important4 - Important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
      C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
      C1P008: Low acceptance of new projects and technologies1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important3 - Moderately important
      C1P008: Difficulty of finding and engaging relevant actors1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant
      C1P008: Lack of trust beyond social network1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
      C1P008: Rebound effect1 - Unimportant5 - Very important4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important
      C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important
      C1P008: Exclusion of socially disadvantaged groups1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important
      C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important4 - Important
      C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important
      C1P008: Any other Social BARRIER1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
      C1P009: Lack of awareness among authorities1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
      C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important
      C1P009: High costs of design, material, construction, and installation1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important4 - Important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important
      C1P010: Insufficient external financial support and funding for project activities1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important3 - Moderately important
      C1P010: Economic crisis1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important3 - Moderately important4 - Important
      C1P010: Risk and uncertainty5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important3 - Moderately important
      C1P010: Lack of consolidated and tested business models1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important4 - Important
      C1P010: Limited access to capital and cost disincentives1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important3 - Moderately important
      C1P010: Any other Financial BARRIER1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives1 - Unimportant5 - Very important4 - Important1 - Unimportant4 - Important4 - Important3 - Moderately important
      C1P011: Energy price distortion1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important5 - Very important3 - Moderately important
      C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important
      C1P011: Any other Market BARRIER1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Research & Innovation
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation
      • Planning/leading
      • Planning/leading,
      • Design/demand aggregation
      C1P012: Financial/Funding
      • None
      • None
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Analyst, ICT and Big Data
      • None
      • None
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Business process management
      • None
      • None
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Urban Services providers
      • None
      • None
      • None
      C1P012: Real Estate developers
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      • None
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Design/Construction companies
      • Planning/leading,
      • Design/demand aggregation
      • None
      • None
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: End‐users/Occupants/Energy Citizens
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • None
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Social/Civil Society/NGOs
      • None
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Industry/SME/eCommerce
      • None
      • None
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Other
      • None
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)