Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Uncompare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Uncompare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Uncompare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleEspoo, Kera
Riga, Ķīpsala, RTU smart student city
Umeå, Ålidhem district
Zero Village Bergen (ZVB)
Ankara, Çamlık District
Istanbul, Kadikoy district, Caferaga
Stor-Elvdal, Campus Evenstad
Kladno, Sletiště (Sport Area), PED Winter Stadium
Freiburg, Waldsee
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabEspoo, KeraRiga, Ķīpsala, RTU smart student cityUmeå, Ålidhem districtZero Village Bergen (ZVB)Ankara, Çamlık DistrictIstanbul, Kadikoy district, CaferagaStor-Elvdal, Campus EvenstadKladno, Sletiště (Sport Area), PED Winter StadiumFreiburg, Waldsee
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesyesyesyesyesyesnonoyes
PED relevant case studyyesnononoyesnoyesyesno
PED Lab.nonononononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesyesyesyes
Annual energy surplusnonononoyesnoyesyesno
Energy communitynoyesnonoyesyesnoyesyes
Circularityyesnononononononono
Air quality and urban comfortnonononononononono
Electrificationnonononoyesnonoyesyes
Net-zero energy costnonononoyesnononono
Net-zero emissionnononoyesyesnononoyes
Self-sufficiency (energy autonomous)noyesnonononononono
Maximise self-sufficiencynoyesnonoyesnononono
Othernononoyesnonoyesnono
Other (A1P004)Sustainable neighbourhood; Energy efficientEnergy-flexibility
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhasePlanning PhasePlanning PhasePlanning PhasePlanning PhaseIn operationPlanning PhasePlanning Phase
A1P006: Start Date
A1P006: Start date01/1501/2410/2210/2201/2001/13202211/21
A1P007: End Date
A1P007: End date12/3512/2609/2509/2512/2212/2411/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Meteorological open data
  • Open data city platform – different dashboards,
  • General statistical datasets
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • Umeå Energi
  • Alpagut, B., Lopez Romo, A., Hernández, P., Tabanoğlu, O., & Hermoso Martinez, N. (2021). A GIS-Based Multicriteria Assessment for Identification of Positive Energy Districts Boundary in Cities. Energies, 14(22), 7517.
  • Data from the local energy provider available (restricted usage for some data points because of data security reasons,
  • renewable energy potential,
  • own calculations based on publicly available data,
  • Some data can be found in https://geoportal.freiburg.de/freigis/
A1P011: Geographic coordinates
X Coordinate (longitude):24.7537777824.0816833920.26305.25558932.79536929.0263195268751711.07877077353174614.092967.885857135842917
Y Coordinate (latitude):60.2162222256.9524595663.825860.27605739.88181240.9884139524746161.4260442039911250.1371547.986535207080045
A1P012: Country
A1P012: CountryFinlandLatviaSwedenNorwayTurkeyTurkeyNorwayCzech RepublicGermany
A1P013: City
A1P013: CityEspooRigaUmeåBergenAnkaraIstanbulEvenstad, Stor-Elvdal municipalityKladnoFreiburg im Breisgau
A1P014: Climate Zone (Köppen Geiger classification)
A1P014: Climate Zone (Köppen Geiger classification).DfbCfbDfbCfbDsbCsbDwcCfbCfb
A1P015: District boundary
A1P015: District boundaryGeographicGeographicGeographicGeographicGeographicGeographicGeographicVirtual
OtherV1* (ca 8 buildings)
A1P016: Ownership of the case study/PED Lab
A1P016: Ownership of the case study/PED Lab:MixedPublicPublicPrivatePrivateMixedPublicMixedMixed
A1P017: Ownership of the land / physical infrastructure
A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple Owners
A1P018: Number of buildings in PED
A1P018: Number of buildings in PED15257132282941
A1P019: Conditioned space
A1P019: Conditioned space [m²]170000420002260011605210000284070
A1P020: Total ground area
A1P020: Total ground area [m²]580000119264520003780005080011517274920000
A1P021: Floor area ratio: Conditioned space / total ground area
A1P021: Floor area ratio: Conditioned space / total ground area011000000
A1P022: Financial schemes
A1P022a: Financing - PRIVATE - Real estatenononoyesnononoyesno
A1P022a: Add the value in EUR if available [EUR]
A1P022b: Financing - PRIVATE - ESCO schemenononononononoyesno
A1P022b: Add the value in EUR if available [EUR]
A1P022c: Financing - PRIVATE - Othernonononononononono
A1P022c: Add the value in EUR if available [EUR]
A1P022d: Financing - PUBLIC - EU structural fundingnononononononoyesno
A1P022d: Add the value in EUR if available [EUR]
A1P022e: Financing - PUBLIC - National fundingnonononononoyesnono
A1P022e: Add the value in EUR if available [EUR]
A1P022f: Financing - PUBLIC - Regional fundingnonononononononono
A1P022f: Add the value in EUR if available [EUR]
A1P022g: Financing - PUBLIC - Municipal fundingnononononononoyesyes
A1P022g: Add the value in EUR if available [EUR]
A1P022h: Financing - PUBLIC - Othernonononononononono
A1P022h: Add the value in EUR if available [EUR]
A1P022i: Financing - RESEARCH FUNDING - EUnoyesnonoyesyesnoyesyes
A1P022i: Add the value in EUR if available [EUR]7500000
A1P022j: Financing - RESEARCH FUNDING - Nationalnonononoyesnoyesyesyes
A1P022j: Add the value in EUR if available [EUR]
A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
A1P022k: Add the value in EUR if available [EUR]
A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
A1P022l: Add the value in EUR if available [EUR]
A1P022: OtherMultiple different funding schemes depending on the case.
A1P023: Economic Targets
A1P023: Economic Targets
  • Job creation,
  • Positive externalities,
  • Boosting local businesses,
  • Boosting local and sustainable production,
  • Boosting consumption of local and sustainable products
  • Boosting local businesses,
  • Boosting local and sustainable production
  • Boosting local and sustainable production
  • Job creation,
  • Positive externalities,
  • Other
  • Boosting local businesses,
  • Boosting local and sustainable production
  • Job creation,
  • Positive externalities
A1P023: OtherCircular economyBoosting new investors to the area, - Increasing the touristic value of area and urban mobility at the area, - Increasing the regional value (housing price, etc.), - Providing economic advantages by switching to positive energy production
A1P024: More comments:
A1P024: More comments:The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings.
A1P025: Estimated PED case study / PED LAB costs
A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
Contact person for general enquiries
A1P026: NameJoni MäkinenJudith StiekemaGireesh NairChristoph GollnerProf. Dr. İpek Gürsel DİNOMr. Dogan UNERIÅse Lekang SørensenDavid ŠkorňaDr. Annette Steingrube
A1P027: OrganizationCity of EspooOASCUmea MunicipalityFFGMiddle East Technical UniversityMunicipality of KadikoySINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart CitiesMěsto KladnoFraunhofer Institute for solar energy systems
A1P028: AffiliationMunicipality / Public BodiesOtherMunicipality / Public BodiesOtherResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesResearch Center / University
A1P028: Othernot for profit private organisation
A1P029: Emailjoni.makinen@espoo.fijudith@oascities.orggireesh.nair@umu.sechristoph.gollner@ffg.atipekg@metu.edu.trdogan.uneri@kadikoy.bel.trase.sorensen@sintef.nodavid.skorna@mestokladno.czAnnette.Steingrube@ise.fraunhofer.de
Contact person for other special topics
A1P030: NameAssoc. Prof. Onur TaylanMrs. Damla MUHCU YILMAZMichal Kuzmič
A1P031: Emailotaylan@metu.edu.trdamla.muhcu@kadikoy.bel.trmichal.kuzmic@cvut.cz
Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYes
A2P001: Fields of application
A2P001: Fields of application
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies,
  • Waste management,
  • Construction materials
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies
  • Energy efficiency,
  • Energy flexibility,
  • Energy production
  • Energy efficiency,
  • Energy flexibility,
  • Energy production
  • Energy efficiency,
  • Energy production,
  • Construction materials
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies,
  • Construction materials
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies,
  • Indoor air quality
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Waste management
A2P001: Other
A2P002: Tools/strategies/methods applied for each of the above-selected fields
A2P002: Tools/strategies/methods applied for each of the above-selected fields- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)A suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.Simulation tools: City Energy Analyst and PolysunThe energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system.Campus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.Trnsys, PV modelling tools, CADEnergy system modeling
A2P003: Application of ISO52000
A2P003: Application of ISO52000NoNoNoYesYesNoNoYes
A2P004: Appliances included in the calculation of the energy balance
A2P004: Appliances included in the calculation of the energy balanceNoYesYesYesNoYesYesYes
A2P005: Mobility included in the calculation of the energy balance
A2P005: Mobility included in the calculation of the energy balanceNoYesNoNoYesNoYes
A2P006: Description of how mobility is included (or not included) in the calculation
A2P006: Description of how mobility is included (or not included) in the calculationThe university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.Mobility is not included in the calculations.At Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.Not yet included.All energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutrality
A2P007: Annual energy demand in buildings / Thermal demand
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]54.580003.4460.940.771.4135.715
A2P008: Annual energy demand in buildings / Electric Demand
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]19.4500000.5280.100.760.331.76
A2P009: Annual energy demand for e-mobility
A2P009: Annual energy demand for e-mobility [GWh/annum]
A2P010: Annual energy demand for urban infrastructure
A2P010: Annual energy demand for urban infrastructure [GWh/annum]
A2P011: Annual renewable electricity production on-site during target year
A2P011: PVyesnoyesnoyesyesyesyesno
A2P011: PV - specify production in GWh/annum [GWh/annum]40.2493.42400.510.0651.1
A2P011: Windnoyesnonononononono
A2P011: Wind - specify production in GWh/annum [GWh/annum]
A2P011: Hydrononononononononono
A2P011: Hydro - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_elnonononononoyesnono
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
A2P011: Biomass_peat_elnonononononononono
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
A2P011: PVT_elnoyesnonononononono
A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
A2P011: Othernonononononononono
A2P011: Other - specify production in GWh/annum [GWh/annum]
A2P012: Annual renewable thermal production on-site during target year
A2P012: Geothermalnonononononononono
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Solar Thermalnononononoyesyesnono
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.080.045
A2P012: Biomass_heatnoyesnonononoyesnono
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.35
A2P012: Waste heat+HPyesnonononononoyesno
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]1.7
A2P012: Biomass_peat_heatnonononononononono
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: PVT_thnonononononononono
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_firewood_thnonononononononono
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Othernonononononononono
A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
A2P013: Renewable resources on-site - Additional notes
A2P013: Renewable resources on-site - Additional notesLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.Conventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.Two scenarios are conducted regarding Kadikoy PED energy generation. For the second scenario, just 0.53GWh/annum PV production is proposed.Listed values are measurements from 2018. Renewable energy share is increasing.Waste heat from cooling the ice rink.53 MW PV potential in all three quarters; no other internal renewable energy potentials known
A2P014: Annual energy use
A2P014: Annual energy use [GWh/annum]78.86.13.9760.741.5002.1132.5
A2P015: Annual energy delivered
A2P015: Annual energy delivered [GWh/annum]15.40.491
A2P016: Annual non-renewable electricity production on-site during target year
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
A2P017: Annual non-renewable thermal production on-site during target year
A2P017: Gasnoyesnonoyesnononono
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Coalnonononononononono
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Oilnonononononononono
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Othernonononononononono
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P018: Annual renewable electricity imports from outside the boundary during target year
A2P018: PVnononononoyesnonono
A2P018 - PV: specify production in GWh/annum if available [GWh/annum]-0.26
A2P018: Windnonononononononono
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
A2P018: Hydrononononononononono
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_elnonononononononono
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_peat_elnonononononononono
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
A2P018: PVT_elnonononononononono
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Othernonononononononono
A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
A2P019: Annual renewable thermal imports from outside the boundary during target year
A2P019: Geothermalnonononononononono
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Solar Thermalnonononononononono
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_heatnonoyesnononononono
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: Waste heat+HPnonoyesnononononono
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_peat_heatnonononononononono
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: PVT_thnonononononononono
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_firewood_thnonononononononono
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Othernonononononononono
A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
A2P020: Share of RES on-site / RES outside the boundary
A2P020: Share of RES on-site / RES outside the boundary00000-2.2692307692308000
A2P021: GHG-balance calculated for the PED
A2P021: GHG-balance calculated for the PED [tCO2/annum]450000-104
A2P022: KPIs related to the PED case study / PED Lab
A2P022: Safety & Security
A2P022: Health
A2P022: Education
A2P022: MobilityMode of transport; Access to public transportyes
A2P022: EnergyEnergyEnergy efficiency in buildings; Net energy need; Gross energy need; Total energy needEnergy demand (heating and hot water), Energy demand (cooling), Cooling demand, Distributin losses, PV production, RES production, OER, Primafry Non-renewable energy balance, AMR, HMR, CO2 balanceyes
A2P022: Water
A2P022: Economic developmentInvestment cost, Caputal cost, Operation cost, payback period, NPV, cummulated cash flow, savings, Life cycle, ROI, SROI
A2P022: Housing and CommunityDelivery and proximity to amenitiesyes
A2P022: Waste
A2P022: OtherGHG emissions; Power/load; Life cycle cost (LCC); Demographic needs and consultation plan; Public Space
A2P023: Technological Solutions / Innovations - Energy Generation
A2P023: Photovoltaicsyesnoyesyesyesyesyesyesyes
A2P023: Solar thermal collectorsnononoyesnoyesyesnoyes
A2P023: Wind Turbinesnonononononononono
A2P023: Geothermal energy systemnonononononononoyes
A2P023: Waste heat recoveryyesnonononononoyesyes
A2P023: Waste to energynonononononononoyes
A2P023: Polygenerationnonononononononono
A2P023: Co-generationnonononononoyesnoyes
A2P023: Heat Pumpyesnononoyesyesnoyesyes
A2P023: Hydrogennonononononononoyes
A2P023: Hydropower plantnonononononononoyes
A2P023: Biomassnonononononoyesnoyes
A2P023: Biogasnonononononononoyes
A2P023: OtherThe Co-generation is biomass based.
A2P024: Technological Solutions / Innovations - Energy Flexibility
A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesnononoyesyesyes
A2P024: Energy management systemyesyesnonononoyesyesyes
A2P024: Demand-side managementyesyesyesnononoyesyesyes
A2P024: Smart electricity gridyesyesnonononononoyes
A2P024: Thermal Storagenoyesnoyesnonoyesnoyes
A2P024: Electric Storagenoyesnonononoyesnoyes
A2P024: District Heating and Coolingyesyesnonononoyesyesyes
A2P024: Smart metering and demand-responsive control systemsnoyesnonononoyesyesyes
A2P024: P2P – buildingsnonononononononoyes
A2P024: OtherDistrict HeatingBidirectional electric vehicle (EV) charging (V2G)
A2P025: Technological Solutions / Innovations - Energy Efficiency
A2P025: Deep Retrofittingnonoyesnoyesnonoyesyes
A2P025: Energy efficiency measures in historic buildingsnonononononononoyes
A2P025: High-performance new buildingsyesnononononoyesnono
A2P025: Smart Public infrastructure (e.g. smart lighting)yesnononononononono
A2P025: Urban data platformsyesyesnononononoyesyes
A2P025: Mobile applications for citizensnoyesnonononononono
A2P025: Building services (HVAC & Lighting)yesyesnonoyesnonoyesno
A2P025: Smart irrigationnonononononononono
A2P025: Digital tracking for waste disposalnonononononononono
A2P025: Smart surveillancenonononononononono
A2P025: Other
A2P026: Technological Solutions / Innovations - Mobility
A2P026: Efficiency of vehicles (public and/or private)yesnononononononoyes
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnononononononoyes
A2P026: e-Mobilityyesnononononoyesnoyes
A2P026: Soft mobility infrastructures and last mile solutionsyesnononononononoyes
A2P026: Car-free areanonononononononono
A2P026: Other
A2P027: Mobility strategies - Additional notes
A2P027: Mobility strategies - Additional notes
A2P028: Energy efficiency certificates
A2P028: Energy efficiency certificatesNoNoYesNoNoYesYesNo
A2P028: If yes, please specify and/or enter notesPassive house (2 buildings, 4 200 m2, from 2015)National standards apply.
A2P029: Any other building / district certificates
A2P029: Any other building / district certificatesNoNoNoNoYesNoNo
A2P029: If yes, please specify and/or enter notesZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)
A3P001: Relevant city /national strategy
A3P001: Relevant city /national strategy
  • Energy master planning (SECAP, etc.),
  • Climate change adaption plan/strategy (e.g. Climate City contract)
  • Smart cities strategies,
  • Promotion of energy communities (REC/CEC),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • Energy master planning (SECAP, etc.),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • New development strategies
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Urban Renewal Strategies,
  • Energy master planning (SECAP, etc.),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Promotion of energy communities (REC/CEC),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • Energy master planning (SECAP, etc.),
  • Promotion of energy communities (REC/CEC),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies
A3P002: Quantitative targets included in the city / national strategy
A3P002: Quantitative targets included in the city / national strategyCarbon neutrality 2050Climate neutrality by 2035
A3P003: Strategies towards decarbonization of the gas grid
A3P003: Strategies towards decarbonization of the gas grid
  • Electrification of Heating System based on Heat Pumps
  • Electrification of Heating System based on Heat Pumps,
  • Electrification of Cooking Methods
  • Electrification of Heating System based on Heat Pumps
  • Electrification of Heating System based on Heat Pumps,
  • Biogas,
  • Hydrogen
A3P003: OtherNA
A3P004: Identification of needs and priorities
A3P004: Identification of needs and prioritiesAccording to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario.Freiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district level
A3P005: Sustainable behaviour
A3P005: Sustainable behaviourEnergy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economy
A3P006: Economic strategies
A3P006: Economic strategies
  • PPP models,
  • Circular economy models
  • Open data business models,
  • Innovative business models,
  • Demand management Living Lab
  • Innovative business models,
  • PPP models,
  • Circular economy models,
  • Demand management Living Lab,
  • Local trading
  • Innovative business models,
  • PPP models,
  • Existing incentives
  • Demand management Living Lab,
  • Local trading,
  • Existing incentives
A3P006: Other
A3P007: Social models
A3P007: Social models
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Quality of Life
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Affordability
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Citizen Social Research,
  • Prevention of energy poverty,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Behavioural Change / End-users engagement,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
  • Other
  • Strategies towards (local) community-building,
  • Affordability
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
A3P008: Integrated urban strategies
A3P008: Integrated urban strategies
  • Strategic urban planning,
  • Digital twinning and visual 3D models,
  • District Energy plans
  • Digital twinning and visual 3D models
  • District Energy plans
  • Digital twinning and visual 3D models,
  • District Energy plans
  • Strategic urban planning,
  • Digital twinning and visual 3D models,
  • District Energy plans,
  • City Vision 2050,
  • SECAP Updates
  • Strategic urban planning,
  • City Vision 2050,
  • SECAP Updates
  • Strategic urban planning,
  • Digital twinning and visual 3D models,
  • District Energy plans
A3P008: Other
A3P009: Environmental strategies
A3P009: Environmental strategies
  • Net zero carbon footprint,
  • Life Cycle approach,
  • Greening strategies,
  • Nature Based Solutions (NBS)
  • Energy Neutral
  • Carbon-free
  • Energy Neutral,
  • Low Emission Zone
  • Energy Neutral,
  • Low Emission Zone,
  • Net zero carbon footprint
  • Low Emission Zone
  • Net zero carbon footprint
A3P009: OtherEnergy Positive, Low Emission Zone
A3P010: Legal / Regulatory aspects
A3P010: Legal / Regulatory aspectsCampus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.
B1P001: PED/PED relevant concept definition
B1P001: PED/PED relevant concept definitionImplementation of district level heating system to make heating energy positive and expanding local renewable electricity production.ExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.Çamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development.The biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.Onsite Energy Ratio > 1Assessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case study
B1P002: Motivation behind PED/PED relevant project development
B1P002: Motivation behind PED/PED relevant project developmentExpected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.PED-ACT project.In line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.Strategic, economicCity is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regard
B1P003: Environment of the case study area
B2P003: Environment of the case study areaUrban areaUrban areaUrban areaSuburban areaSuburban areaUrban areaRuralUrban areaSuburban area
B1P004: Type of district
B2P004: Type of district
  • New construction
  • Renovation
  • New construction
  • Renovation
  • Renovation
  • New construction,
  • Renovation
  • New construction,
  • Renovation
  • Renovation
B1P005: Case Study Context
B1P005: Case Study Context
  • Re-use / Transformation Area
  • Retrofitting Area
  • New Development
  • Retrofitting Area
  • Re-use / Transformation Area,
  • Retrofitting Area
  • Retrofitting Area
  • New Development,
  • Retrofitting Area
  • Retrofitting Area
B1P006: Year of construction
B1P006: Year of construction1986
B1P007: District population before intervention - Residential
B1P007: District population before intervention - Residential23.3795898
B1P008: District population after intervention - Residential
B1P008: District population after intervention - Residential140005898
B1P009: District population before intervention - Non-residential
B1P009: District population before intervention - Non-residential
B1P010: District population after intervention - Non-residential
B1P010: District population after intervention - Non-residential10000
B1P011: Population density before intervention
B1P011: Population density before intervention000000000
B1P012: Population density after intervention
B1P012: Population density after intervention0.04137931034482800000000.0011987804878049
B1P013: Building and Land Use before intervention
B1P013: Residentialyesnoyesnoyesyesnoyesyes
B1P013 - Residential: Specify the sqm [m²]50800
B1P013: Officeyesnonononoyesnoyesyes
B1P013 - Office: Specify the sqm [m²]
B1P013: Industry and Utilityyesnononononononoyes
B1P013 - Industry and Utility: Specify the sqm [m²]
B1P013: Commercialnononononoyesnonoyes
B1P013 - Commercial: Specify the sqm [m²]
B1P013: Institutionalnonononononononoyes
B1P013 - Institutional: Specify the sqm [m²]
B1P013: Natural areasnononoyesnonononoyes
B1P013 - Natural areas: Specify the sqm [m²]
B1P013: Recreationalnononononononoyesyes
B1P013 - Recreational: Specify the sqm [m²]
B1P013: Dismissed areasyesnononononononono
B1P013 - Dismissed areas: Specify the sqm [m²]
B1P013: Othernononononoyesnonono
B1P013 - Other: Specify the sqm [m²]Cultural Center, Sports Center / Total building and land use data of neigborhood 13,878 residential, 4,441 commercial using before intervention. For project area & 49 building area m2
B1P014: Building and Land Use after intervention
B1P014: Residentialyesnoyesyesyesyesnoyesyes
B1P014 - Residential: Specify the sqm [m²]50800
B1P014: Officeyesnonoyesnoyesnoyesyes
B1P014 - Office: Specify the sqm [m²]
B1P014: Industry and Utilitynonononononononoyes
B1P014 - Industry and Utility: Specify the sqm [m²]
B1P014: Commercialyesnonononoyesnonoyes
B1P014 - Commercial: Specify the sqm [m²]
B1P014: Institutionalnonononononononoyes
B1P014 - Institutional: Specify the sqm [m²]
B1P014: Natural areasnonononononononoyes
B1P014 - Natural areas: Specify the sqm [m²]
B1P014: Recreationalyesnonononononoyesyes
B1P014 - Recreational: Specify the sqm [m²]
B1P014: Dismissed areasnonononononononono
B1P014 - Dismissed areas: Specify the sqm [m²]
B1P014: Othernononononoyesnonono
B1P014 - Other: Specify the sqm [m²]
B2P001: PED Lab concept definition
B2P001: PED Lab concept definition
B2P002: Installation life time
B2P002: Installation life time
B2P003: Scale of action
B2P003: ScaleDistrict
B2P004: Operator of the installation
B2P004: Operator of the installation
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P006: Circular Economy Approach
B2P006: Do you apply any strategy to reuse and recycling the materials?
B2P006: Other
B2P007: Motivation for developing the PED Lab
B2P007: Motivation for developing the PED Lab
B2P007: Other
B2P008: Lead partner that manages the PED Lab
B2P008: Lead partner that manages the PED Lab
B2P008: Other
B2P009: Collaborative partners that participate in the PED Lab
B2P009: Collaborative partners that participate in the PED Lab
B2P009: Other
B2P010: Synergies between the fields of activities
B2P010: Synergies between the fields of activities
B2P011: Available facilities to test urban configurations in PED Lab
B2P011: Available facilities to test urban configurations in PED Lab
B2P011: Other
B2P012: Incubation capacities of PED Lab
B2P012: Incubation capacities of PED Lab
B2P013: Availability of the facilities for external people
B2P013: Availability of the facilities for external people
B2P014: Monitoring measures
B2P014: Monitoring measures
B2P015: Key Performance indicators
B2P015: Key Performance indicators
B2P016: Execution of operations
B2P016: Execution of operations
B2P017: Capacities
B2P017: Capacities
B2P018: Relations with stakeholders
B2P018: Relations with stakeholders
B2P019: Available tools
B2P019: Available tools
B2P019: Available tools
B2P020: External accessibility
B2P020: External accessibility
C1P001: Unlocking Factors
C1P001: Recent technological improvements for on-site RES production5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important5 - Very important4 - Important3 - Moderately important
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important5 - Very important4 - Important3 - Moderately important
C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important3 - Moderately important
C1P001: Storage systems and E-mobility market penetration4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important4 - Important
C1P001: Decreasing costs of innovative materials3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important
C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant4 - Important2 - Slightly important
C1P001: The ability to predict Multiple Benefits3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important
C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important4 - Important3 - Moderately important4 - Important
C1P001: Social acceptance (top-down)3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important4 - Important2 - Slightly important4 - Important
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important2 - Slightly important4 - Important
C1P001: Presence of integrated urban strategies and plans4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important
C1P001: Multidisciplinary approaches available for systemic integration5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important3 - Moderately important
C1P001: Availability of RES on site (Local RES)4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important4 - Important4 - Important
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important4 - Important2 - Slightly important
C1P001: Any other UNLOCKING FACTORS1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
C1P001: Any other UNLOCKING FACTORS (if any)Collaboration with the local partners
C1P002: Driving Factors
C1P002: Climate Change adaptation need5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important3 - Moderately important3 - Moderately important4 - Important
C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important5 - Very important4 - Important4 - Important
C1P002: Rapid urbanization trend and need of urban expansions4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
C1P002: Urban re-development of existing built environment5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important
C1P002: Economic growth need4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important
C1P002: Territorial and market attractiveness3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
C1P002: Energy autonomy/independence2 - Slightly important4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important4 - Important4 - Important3 - Moderately important
C1P002: Any other DRIVING FACTOR1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
C1P002: Any other DRIVING FACTOR (if any)
C1P003: Administrative barriers
C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important4 - Important
C1P003: Lack of good cooperation and acceptance among partners5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important
C1P003: Lack of public participation4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important4 - Important
C1P003: Lack of institutions/mechanisms to disseminate information4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
C1P003:Long and complex procedures for authorization of project activities3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important4 - Important3 - Moderately important
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant
C1P003: Complicated and non-comprehensive public procurement3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important2 - Slightly important3 - Moderately important2 - Slightly important
C1P003: Fragmented and or complex ownership structure3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important5 - Very important4 - Important
C1P003: City administration & cross-sectoral attitude/approaches (silos)4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important2 - Slightly important
C1P003: Lack of internal capacities to support energy transition4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant4 - Important3 - Moderately important
C1P003: Any other Administrative BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
C1P003: Any other Administrative BARRIER (if any)Fragmented financial support; lack of experimental budget for complex projects, etc.
C1P004: Policy barriers
C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important
C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important5 - Very important3 - Moderately important
C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important4 - Important2 - Slightly important
C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
C1P004: Any other Political BARRIER (if any)Different priorities; overall problematic system od decentralization powers; non-fuctioning model of local development funding, etc.
C1P005: Legal and Regulatory barriers
C1P005: Inadequate regulations for new technologies3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important5 - Very important3 - Moderately important4 - Important
C1P005: Regulatory instability3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important
C1P005: Non-effective regulations3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important3 - Moderately important4 - Important1 - Unimportant
C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important4 - Important5 - Very important
C1P005: Building code and land-use planning hindering innovative technologies4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important
C1P005: Insufficient or insecure financial incentives5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important3 - Moderately important
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important
C1P005: Shortage of proven and tested solutions and examples2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important
C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Any other Legal and Regulatory BARRIER (if any)
C1P006: Environmental barriers
C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 1
C1P007: Technical barriers
C1P007: Lack of skilled and trained personnel3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important4 - Important4 - Important
C1P007: Deficient planning3 - Moderately important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important
C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important4 - Important4 - Important
C1P007: Lack of well-defined process3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important5 - Very important3 - Moderately important
C1P007: Inaccuracy in energy modelling and simulation3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important3 - Moderately important2 - Slightly important
C1P007: Lack/cost of computational scalability3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important5 - Very important2 - Slightly important1 - Unimportant
C1P007: Grid congestion, grid instability3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important4 - Important3 - Moderately important
C1P007: Negative effects of project intervention on the natural environment3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important4 - Important
C1P007: Difficult definition of system boundaries2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant4 - Important4 - Important
C1P007: Any other Thecnical BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant
C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.Inadequate regulation towards energy transition
C1P008: Social and Cultural barriers
C1P008: Inertia3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important
C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important4 - Important3 - Moderately important
C1P008: Low acceptance of new projects and technologies3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important3 - Moderately important5 - Very important2 - Slightly important
C1P008: Difficulty of finding and engaging relevant actors4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important4 - Important
C1P008: Lack of trust beyond social network3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important
C1P008: Rebound effect3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important
C1P008: Hostile or passive attitude towards environmentalism2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
C1P008: Exclusion of socially disadvantaged groups4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
C1P008: Non-energy issues are more important and urgent for actors2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important4 - Important5 - Very important4 - Important
C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
C1P008: Any other Social BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Any other Social BARRIER (if any)
C1P009: Information and Awareness barriers
C1P009: Insufficient information on the part of potential users and consumers4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important4 - Important2 - Slightly important
C1P009: Lack of awareness among authorities3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important4 - Important4 - Important2 - Slightly important
C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
C1P009: High costs of design, material, construction, and installation4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important5 - Very important5 - Very important4 - Important
C1P009: Any other Information and Awareness BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
C1P010: Financial barriers
C1P010: Hidden costs3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important5 - Very important4 - Important2 - Slightly important
C1P010: Insufficient external financial support and funding for project activities4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important3 - Moderately important
C1P010: Economic crisis4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important
C1P010: Risk and uncertainty3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important4 - Important4 - Important
C1P010: Lack of consolidated and tested business models3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important3 - Moderately important
C1P010: Limited access to capital and cost disincentives3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important
C1P010: Any other Financial BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P010: Any other Financial BARRIER (if any)
C1P011: Market barriers
C1P011: Split incentives3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important2 - Slightly important
C1P011: Energy price distortion3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important3 - Moderately important
C1P011: Any other Market BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P011: Any other Market BARRIER (if any)
C1P012: Stakeholders involved
C1P012: Government/Public Authorities
  • Planning/leading,
  • Design/demand aggregation
  • Planning/leading
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading
  • Planning/leading,
  • Design/demand aggregation
  • Planning/leading
C1P012: Research & Innovation
  • Planning/leading,
  • Design/demand aggregation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Financial/Funding
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Design/demand aggregation,
  • Construction/implementation
  • Construction/implementation
  • None
C1P012: Analyst, ICT and Big Data
  • Planning/leading,
  • Monitoring/operation/management
  • Planning/leading,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Monitoring/operation/management
  • None
C1P012: Business process management
  • Design/demand aggregation,
  • Construction/implementation
  • Monitoring/operation/management
  • None
  • Planning/leading
  • None
C1P012: Urban Services providers
  • Planning/leading,
  • Construction/implementation
  • Planning/leading,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation
  • Design/demand aggregation
  • None
C1P012: Real Estate developers
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Construction/implementation
  • None
  • Planning/leading,
  • Monitoring/operation/management
  • Design/demand aggregation
  • None
C1P012: Design/Construction companies
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Construction/implementation
  • Construction/implementation
  • Construction/implementation
  • Construction/implementation
C1P012: End‐users/Occupants/Energy Citizens
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Monitoring/operation/management
  • Design/demand aggregation
  • Planning/leading,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Social/Civil Society/NGOs
  • Planning/leading
  • Design/demand aggregation
  • Planning/leading,
  • Design/demand aggregation
  • None
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Industry/SME/eCommerce
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Construction/implementation
  • None
C1P012: Other
C1P012: Other (if any)
Summary

Authors (framework concept)

Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

Contributors (to the content)

Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

Implemented by

Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)