Filters:
NameProjectTypeCompare
Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna/16. District HeatCOOP PED Relevant Case Study Compare
Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Uncompare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Uncompare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Uncompare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Uncompare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Uncompare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleEspoo, Kera
Évora, Portugal
NTNU Campus within the Knowledge Axis, Trondheim
Leipzig, Baumwollspinnerei district
Uden, Loopkantstraat
Findhorn, the Park
Utrecht, the Netherlands (District of Kanaleneiland)
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabEspoo, KeraÉvora, PortugalNTNU Campus within the Knowledge Axis, TrondheimLeipzig, Baumwollspinnerei districtUden, LoopkantstraatFindhorn, the ParkUtrecht, the Netherlands (District of Kanaleneiland)
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesnoyesyesnoyesno
PED relevant case studyyesyesnonoyesnoyes
PED Lab.noyesnonononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesnoyesyesyesyesyes
Annual energy surplusnoyesnonoyesyesno
Energy communitynoyesnononoyesyes
Circularityyesnonononoyesno
Air quality and urban comfortnononoyesnonono
Electrificationnononoyesyesyesyes
Net-zero energy costnonononononono
Net-zero emissionnonoyesnonoyesno
Self-sufficiency (energy autonomous)nonononononono
Maximise self-sufficiencynononononoyesno
Othernonoyesyesnonono
Other (A1P004)Energy neutral; Energy efficient; Sustainable neighbourhoodNet-zero emission; Annual energy surplus
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseImplementation PhaseIn operationImplementation PhaseIn operationIn operationPlanning Phase
A1P006: Start Date
A1P006: Start date01/1510/1901/1606/1701/6211/23
A1P007: End Date
A1P007: End date12/3509/2405/2311/26
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • Meteorological open data
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
    • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
    • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
    • https://www.synikia.eu/no/bibliotek/
        A1P011: Geographic coordinates
        X Coordinate (longitude):24.75377778-7.90937710.39647212.3184585.6191-3.60995.0875
        Y Coordinate (latitude):60.2162222238.57080463.42228051.32649251.660657.653052.0653
        A1P012: Country
        A1P012: CountryFinlandPortugalNorwayGermanyNetherlandsUnited KingdomNetherlands
        A1P013: City
        A1P013: CityEspooÉvoraTrondheimLeipzigUdenFindhornUtrecht (Kanaleneiland)
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).DfbCsaDfbDfbCfbDwcCfb
        A1P015: District boundary
        A1P015: District boundaryGeographicGeographicFunctionalGeographicGeographicGeographic
        OtherGeographic
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:MixedMixedMixedPrivateMixedPrivate
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple Owners
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED21160
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]170002360
        A1P020: Total ground area
        A1P020: Total ground area [m²]580000136.0003000038601800002910000
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area0001100
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenonononoyesyesno
        A1P022a: Add the value in EUR if available [EUR]7804440
        A1P022b: Financing - PRIVATE - ESCO schemenonononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernonononononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnonononononono
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingnononononoyesyes
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingnonononononono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnonononononono
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernonononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnoyesnononoyesno
        A1P022i: Add the value in EUR if available [EUR]19998275
        A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: OtherMultiple different funding schemes depending on the case.
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Job creation,
        • Positive externalities,
        • Boosting local businesses,
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products
        A1P023: OtherCircular economySustainable and replicable business models regarding renewable energy systems
        A1P024: More comments:
        A1P024: More comments:The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]7804440
        Contact person for general enquiries
        A1P026: NameJoni MäkinenJoão Bravo DiasChristoph GollnerSimon BaumTonje Healey TrulsrudStefano NebioloDr. Gonçalo Homem De Almeida Rodriguez Correia
        A1P027: OrganizationCity of EspooEDP LabelecFFGCENERO Energy GmbHNorwegian University of Science and Technology (NTNU)Findhorn Innovation Research and Education CICDelft University of Technology
        A1P028: AffiliationMunicipality / Public BodiesSME / IndustryOtherOtherResearch Center / UniversityResearch Center / UniversityResearch Center / University
        A1P028: OtherCENERO Energy GmbH
        A1P029: Emailjoni.makinen@espoo.fijoao.bravodias@edp.ptchristoph.gollner@ffg.atsib@cenero.detonje.h.trulsrud@ntnu.nostefanonebiolo@gmail.comg.correia@tudelft.nl
        Contact person for other special topics
        A1P030: NameSimon BaumQiaochu Fan
        A1P031: Emailsib@cenero.deq.fan-1@tudelft.nl
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Waste management,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Waste management,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Waste management,
        • Indoor air quality,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Waste management
        • Energy efficiency,
        • Energy flexibility,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies
        A2P001: Other
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fields- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)Energy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materials
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoNoYes
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceNoYesNo
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoYesNo
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationnot included
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]54.51.650.148
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]19.40.1091.2
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]0
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesnonoyesyesyesno
        A2P011: PV - specify production in GWh/annum [GWh/annum]40.058
        A2P011: Windnononononoyesno
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydrononononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnonononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnonononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnonononononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernonononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnonononoyesnono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnononononoyesno
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatnononononoyesno
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPyesnonononoyesno
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_peat_heatnonononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnonononononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnononononoyesno
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernonononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notesLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.*Annual energy use below is presentedin primary energy consumption3x225 kW wind turbines + 100 kW PV
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]78.82.4210.1941.2
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]15.40.03681.2
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnonononononono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnonononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnonononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernonononononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnonononononono
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
        A2P018: Windnonononononono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydrononononononono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnonononononono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnonononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnonononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernonononononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnonononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnonononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnonononononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnonononononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnonononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnonononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnonononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernonononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary0000000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]450000-0.00043
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & SecurityPersonal Safety
        A2P022: HealthHealthy community
        A2P022: Education
        A2P022: MobilityMode of transport; Access to public transportSustainable mobilityImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districts
        A2P022: EnergyEnergy efficiency in buildings; Net energy need; Gross energy need; Total energy needapplyNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emissionTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stability
        A2P022: Water
        A2P022: Economic developmentcapital costs, operational cots, overall economic performance (5 KPIs)Development of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resilience
        A2P022: Housing and CommunityDelivery and proximity to amenitiesdemographic composition, diverse community, social cohesion
        A2P022: Waste
        A2P022: OtherGHG emissions; Power/load; Life cycle cost (LCC); Demographic needs and consultation plan; Public SpaceSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsyesyesnonoyesyesyes
        A2P023: Solar thermal collectorsnoyesnoyesnoyesno
        A2P023: Wind Turbinesnononononoyesyes
        A2P023: Geothermal energy systemnonononoyesnono
        A2P023: Waste heat recoveryyesnonononoyesno
        A2P023: Waste to energynonononononono
        A2P023: Polygenerationnonononononono
        A2P023: Co-generationnonononononono
        A2P023: Heat Pumpyesnonoyesyesyesno
        A2P023: Hydrogennonononononono
        A2P023: Hydropower plantnonononononono
        A2P023: Biomassnononononoyesno
        A2P023: Biogasnonononononono
        A2P023: Other
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)yesyesnonononono
        A2P024: Energy management systemyesyesnonoyesyesyes
        A2P024: Demand-side managementyesnononoyesnono
        A2P024: Smart electricity gridyesyesnonononoyes
        A2P024: Thermal Storagenoyesnononoyesno
        A2P024: Electric Storagenoyesnononoyesyes
        A2P024: District Heating and Coolingyesnonononoyesno
        A2P024: Smart metering and demand-responsive control systemsnoyesnonoyesnono
        A2P024: P2P – buildingsnoyesnonononono
        A2P024: Other
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnonononononoyes
        A2P025: Energy efficiency measures in historic buildingsnoyesnonononono
        A2P025: High-performance new buildingsyesnononoyesyesno
        A2P025: Smart Public infrastructure (e.g. smart lighting)yesnononononoyes
        A2P025: Urban data platformsyesyesnonononoyes
        A2P025: Mobile applications for citizensnoyesnonononono
        A2P025: Building services (HVAC & Lighting)yesyesnonoyesnono
        A2P025: Smart irrigationnonononononono
        A2P025: Digital tracking for waste disposalnoyesnonononono
        A2P025: Smart surveillancenoyesnoyesnonono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)yesnononononoyes
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnonoyesnonoyes
        A2P026: e-Mobilityyesyesnoyesnoyesyes
        A2P026: Soft mobility infrastructures and last mile solutionsyesyesnonononono
        A2P026: Car-free areanonononononono
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notesTest-Concept for bidirectional charging.
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesNoNoYes
        A2P028: If yes, please specify and/or enter notesEPC = 0, energy neutral building
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNoNo
        A2P029: If yes, please specify and/or enter notes
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategy
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Biogas
        • Electrification of Heating System based on Heat Pumps
        A3P003: Other
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and priorities
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviour
        A3P006: Economic strategies
        A3P006: Economic strategies
        • PPP models,
        • Circular economy models
        • Innovative business models,
        • Other
        • Innovative business models,
        • Local trading,
        • Existing incentives
        A3P006: Otheroperational savings through efficiency measures
        A3P007: Social models
        A3P007: Social models
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Quality of Life
        • Behavioural Change / End-users engagement
        • Co-creation / Citizen engagement strategies,
        • Social incentives,
        • Quality of Life
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Quality of Life
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Prevention of energy poverty,
        • Digital Inclusion
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • District Energy plans
        • Strategic urban planning,
        • District Energy plans
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Net zero carbon footprint,
        • Life Cycle approach,
        • Greening strategies,
        • Nature Based Solutions (NBS)
        • Energy Neutral
        • Other
        • Energy Neutral,
        • Net zero carbon footprint
        • Energy Neutral,
        • Low Emission Zone,
        • Nature Based Solutions (NBS)
        A3P009: OtherPositive Energy Balance for the demo site
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspects
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionImplementation of district level heating system to make heating energy positive and expanding local renewable electricity production.The PED main objective is to achieve the energy transition while preserving cultural heritage and improving citizen’s quality of life.The demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentPOCITYF brings together eight cities (Lightouse and Fellow cities), all having cultural heritage areas in their territory. All are intrinsically motivated to participate in the necessary energy transition not only for their conventional city districts of mixed-used, but also for districts with individually specificities as those belonging in their cultural heritage, which at the moment may be acting as barriers for their further environmental sustainability, but after POCITYF will be acting as a promising building retrofits roadmap for similar and other EU cities.The need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaUrban areaUrban areaUrban areaSuburban areaRural
        B1P004: Type of district
        B2P004: Type of district
        • New construction
        • Renovation
        • New construction,
        • Renovation
        • New construction
        • New construction
        B1P005: Case Study Context
        B1P005: Case Study Context
        • Re-use / Transformation Area
        • Preservation Area
        • Re-use / Transformation Area,
        • New Development,
        • Retrofitting Area
        • Preservation Area
        • New Development
        • New Development
        B1P006: Year of construction
        B1P006: Year of construction
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential14000
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential10000
        B1P011: Population density before intervention
        B1P011: Population density before intervention0000000
        B1P012: Population density after intervention
        B1P012: Population density after intervention0.041379310344828000000
        B1P013: Building and Land Use before intervention
        B1P013: Residentialyesnononononono
        B1P013 - Residential: Specify the sqm [m²]
        B1P013: Officeyesnononononono
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilityyesnononononono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnonononononono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnonononononono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasnononononoyesno
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnonononononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasyesnononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernonononononono
        B1P013 - Other: Specify the sqm [m²]
        B1P014: Building and Land Use after intervention
        B1P014: Residentialyesnononoyesyesno
        B1P014 - Residential: Specify the sqm [m²]2394
        B1P014: Officeyesnonononoyesno
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynonononononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialyesnononononono
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnonononononono
        B1P014 - Institutional: Specify the sqm [m²]
        B1P014: Natural areasnononononoyesno
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalyesnononononono
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnonononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernonoyesnononono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definition
        B2P002: Installation life time
        B2P002: Installation life time
        B2P003: Scale of action
        B2P003: ScaleDistrictCampus
        B2P004: Operator of the installation
        B2P004: Operator of the installation
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED Lab
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Buildings,
        • Demand-side management,
        • Prosumers,
        • Renewable generation,
        • Energy storage,
        • Energy networks,
        • Waste management,
        • E-mobility,
        • Social interactions,
        • Circular economy models
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Monitoring and evaluation infrastructure,
        • Tools for prototyping and modelling,
        • Tools, spaces, events for testing and validation
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production5 - Very important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
        C1P001: Storage systems and E-mobility market penetration4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important
        C1P001: Decreasing costs of innovative materials3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
        C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
        C1P001: The ability to predict Multiple Benefits3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
        C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
        C1P001: Social acceptance (top-down)3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important
        C1P001: Presence of integrated urban strategies and plans4 - Important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
        C1P001: Multidisciplinary approaches available for systemic integration5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant4 - Important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Availability of RES on site (Local RES)4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders5 - Very important4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant4 - Important
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important
        C1P002: Rapid urbanization trend and need of urban expansions4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
        C1P002: Urban re-development of existing built environment5 - Very important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important
        C1P002: Economic growth need4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important
        C1P002: Territorial and market attractiveness3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
        C1P002: Energy autonomy/independence2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P003: Lack of good cooperation and acceptance among partners5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P003: Lack of public participation4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P003: Lack of institutions/mechanisms to disseminate information4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003:Long and complex procedures for authorization of project activities3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003: Complicated and non-comprehensive public procurement3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003: Lack of internal capacities to support energy transition4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P005: Regulatory instability3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P005: Non-effective regulations3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P005: Building code and land-use planning hindering innovative technologies4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P005: Insufficient or insecure financial incentives5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P005: Shortage of proven and tested solutions and examples2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriers
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P007: Deficient planning3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Lack of well-defined process3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P007: Inaccuracy in energy modelling and simulation3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P007: Lack/cost of computational scalability3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P007: Grid congestion, grid instability3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Difficult definition of system boundaries2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P008: Low acceptance of new projects and technologies3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P008: Difficulty of finding and engaging relevant actors4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P008: Lack of trust beyond social network3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P008: Rebound effect3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P008: Hostile or passive attitude towards environmentalism2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P008: Exclusion of socially disadvantaged groups4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P008: Non-energy issues are more important and urgent for actors2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P009: Lack of awareness among authorities3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P009: High costs of design, material, construction, and installation4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P010: Insufficient external financial support and funding for project activities4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P010: Economic crisis4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P010: Risk and uncertainty3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant4 - Important
        C1P010: Lack of consolidated and tested business models3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P010: Limited access to capital and cost disincentives3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P011: Energy price distortion3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading,
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation
        C1P012: Research & Innovation
        • Planning/leading,
        • Design/demand aggregation
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Financial/Funding
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: Analyst, ICT and Big Data
        • Planning/leading,
        • Monitoring/operation/management
        C1P012: Business process management
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: Urban Services providers
        • Planning/leading,
        • Construction/implementation
        C1P012: Real Estate developers
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Design/Construction companies
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation
        C1P012: End‐users/Occupants/Energy Citizens
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Social/Civil Society/NGOs
        • Planning/leading
        C1P012: Industry/SME/eCommerce
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: Other
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)