Filters:
NameProjectTypeCompare
Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna/16. District HeatCOOP PED Relevant Case Study Compare
Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Uncompare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Uncompare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleGroningen, PED North
Maia, Sobreiro Social Housing
Romania, Alba Iulia PED
Barcelona, SEILAB & Energy SmartLab
Jacobs Borchs Gate, Drammen
Oslo, Verksbyen
Salzburg, Gneis district
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabGroningen, PED NorthMaia, Sobreiro Social HousingRomania, Alba Iulia PEDBarcelona, SEILAB & Energy SmartLabJacobs Borchs Gate, DrammenOslo, VerksbyenSalzburg, Gneis district
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesnonoyesyes
PED relevant case studynonononoyesnono
PED Lab.yesyesnoyesnonono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesnoyesyesyes
Annual energy surplusyesnoyesnonoyesyes
Energy communityyesnoyesyesnonoyes
Circularityyesnononononono
Air quality and urban comfortnonoyesnonoyesyes
Electrificationnonoyesyesnonono
Net-zero energy costnonononononono
Net-zero emissionyesnonoyesyesyesno
Self-sufficiency (energy autonomous)nonoyesyesnonono
Maximise self-sufficiencynoyesyesnononono
Othernononoyesyesnono
Other (A1P004)Green ITEnergy efficient; Carbon-free; A drive for both non fossil fuel and non-greenhouse gas working fluids plus maximum efficiency led to deploying ammonia fjord source heat pumps
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhasePlanning PhaseImplementation PhaseIn operationCompletedImplementation PhaseCompleted
A1P006: Start Date
A1P006: Start date12/1810/2101/2401/201101/0907/1801/20
A1P007: End Date
A1P007: End date12/2310/2412/2602/201312/1208/2401/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets
  • Monitoring data available within the districts
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
    • Historical sources,
    • GIS of the municipality,
    • Basic BEMs
    A1P011: Geographic coordinates
    X Coordinate (longitude):6.535121-8.37355723.5801120980232352.110.23060310.98617335443299213.041216
    Y Coordinate (latitude):53.23484641.13580446.07701527868011541.359.74133459.2242971664204647.771019
    A1P012: Country
    A1P012: CountryNetherlandsPortugalRomaniaSpainNorwayNorwayAustria
    A1P013: City
    A1P013: CityGroningenMaiaAlba IuliaBarcelona and TarragonaDrammenFredrikstadSalzburg
    A1P014: Climate Zone (Köppen Geiger classification)
    A1P014: Climate Zone (Köppen Geiger classification).CfaCsbDfbCsaDfbCfbDfb
    A1P015: District boundary
    A1P015: District boundaryFunctionalVirtualFunctionalVirtualGeographicGeographic
    OtherGeographic
    A1P016: Ownership of the case study/PED Lab
    A1P016: Ownership of the case study/PED Lab:MixedPublicPublicPublicPrivatePrivateMixed
    A1P017: Ownership of the land / physical infrastructure
    A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerSingle OwnerSingle OwnerSingle OwnerSingle Owner
    A1P018: Number of buildings in PED
    A1P018: Number of buildings in PED72260217
    A1P019: Conditioned space
    A1P019: Conditioned space [m²]1.013550199762
    A1P020: Total ground area
    A1P020: Total ground area [m²]17.1328423.451000
    A1P021: Floor area ratio: Conditioned space / total ground area
    A1P021: Floor area ratio: Conditioned space / total ground area0000000
    A1P022: Financial schemes
    A1P022a: Financing - PRIVATE - Real estateyesnonononoyesno
    A1P022a: Add the value in EUR if available [EUR]
    A1P022b: Financing - PRIVATE - ESCO schemenonononononono
    A1P022b: Add the value in EUR if available [EUR]
    A1P022c: Financing - PRIVATE - Otheryesyesnonoyesnono
    A1P022c: Add the value in EUR if available [EUR]
    A1P022d: Financing - PUBLIC - EU structural fundingnonoyesnononono
    A1P022d: Add the value in EUR if available [EUR]
    A1P022e: Financing - PUBLIC - National fundingyesyesyesnononono
    A1P022e: Add the value in EUR if available [EUR]
    A1P022f: Financing - PUBLIC - Regional fundingnoyesyesnononono
    A1P022f: Add the value in EUR if available [EUR]
    A1P022g: Financing - PUBLIC - Municipal fundingyesnoyesnononono
    A1P022g: Add the value in EUR if available [EUR]
    A1P022h: Financing - PUBLIC - Othernonononononono
    A1P022h: Add the value in EUR if available [EUR]
    A1P022i: Financing - RESEARCH FUNDING - EUyesyesnonononoyes
    A1P022i: Add the value in EUR if available [EUR]
    A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononono
    A1P022j: Add the value in EUR if available [EUR]
    A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
    A1P022k: Add the value in EUR if available [EUR]
    A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
    A1P022l: Add the value in EUR if available [EUR]
    A1P022: Other
    A1P023: Economic Targets
    A1P023: Economic Targets
    • Boosting local businesses,
    • Boosting local and sustainable production
    • Positive externalities,
    • Boosting local and sustainable production
    • Job creation,
    • Positive externalities,
    • Other
    • Job creation,
    • Boosting local and sustainable production
    • Positive externalities,
    • Other
    A1P023: OtherBoosting sustainability for public schoolsBoosting social cooperation and social aid
    A1P024: More comments:
    A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.The total development consists of more than 1500 dwellings, a kindergarten, a school, and commercial buildings. Two of the residential blocks are included as demonstration projects in syn.ikia. The two blocks have 20 dwellings in each and are 6 stories high.
    A1P025: Estimated PED case study / PED LAB costs
    A1P025: Estimated PED case study / PED LAB costs [mil. EUR]3.5
    Contact person for general enquiries
    A1P026: NameJasper Tonen, Elisabeth KoopsAdelina RodriguesTudor DrâmbăreanDr. Jaume Salom, Dra. Cristina CorcheroChristoph GollnerTonje Healey TrulsrudAbel Magyari
    A1P027: OrganizationMunicipality of GroningenMaia Municipality (CM Maia) – Energy and Mobility divisionMunicipality of Alba IuliaIRECFFGNorwegian University of Science and technology (NTNU)ABUD
    A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityOtherResearch Center / UniversityResearch Center / University
    A1P028: OtherMaria Elena Seemann
    A1P029: EmailJasper.tonen@groningen.nldscm.adelina@cm-maia.pttudor.drambarean@apulum.roJsalom@irec.catchristoph.gollner@ffg.attonje.h.trulsrud@ntnu.nomagyari.abel@abud.hu
    Contact person for other special topics
    A1P030: NameCarolina Gonçalves (AdEPorto)Maria-Elena SeemannStrassl Ingeborg
    A1P031: Emailcarolinagoncalves@adeporto.eumaria.seemann@apulum.roapulinge.strassl@salzburg.gv.at
    Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
    A2P001: Fields of application
    A2P001: Fields of application
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Waste management
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Construction materials
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies
    • Energy efficiency
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Indoor air quality
    • Energy efficiency,
    • Energy flexibility,
    • Energy production
    A2P001: Other
    A2P002: Tools/strategies/methods applied for each of the above-selected fields
    A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsEnergy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:Thermal rehabilitation of the main building, and investments in the energy efficiency and consumption fields.Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)Energy efficiency: energy-efficient buildings that comply with the Norwegian Passive House standard. Energy Flexibility: sharing of PV energy between the dwellings Energy production: BIPV on the roof and facades, and a ground source heat pump for thermal energy. E-mobility: EV charging Urban comfort: a large green park in the neighbourhood with a small lake and recreational areas Digital technologies: Smart Home Systems for lighting, heating and ventilation Indoor air quality: balanced ventilation- Dynamic district, and building scale energy modelling - Microclimate modelling - Klimaaktiv certification system - Energy community - Flexibility with shared heating and electricity systems
    A2P003: Application of ISO52000
    A2P003: Application of ISO52000NoNoYesYesYes
    A2P004: Appliances included in the calculation of the energy balance
    A2P004: Appliances included in the calculation of the energy balanceNoYesYesYesNoNo
    A2P005: Mobility included in the calculation of the energy balance
    A2P005: Mobility included in the calculation of the energy balanceNoNoNoYesNoNo
    A2P006: Description of how mobility is included (or not included) in the calculation
    A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.There will be 1 EV station placed nearby the main building. This would be the link to the mobility field.– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah
    A2P007: Annual energy demand in buildings / Thermal demand
    A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.30.9820.16
    A2P008: Annual energy demand in buildings / Electric Demand
    A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.330.0484410.053
    A2P009: Annual energy demand for e-mobility
    A2P009: Annual energy demand for e-mobility [GWh/annum]
    A2P010: Annual energy demand for urban infrastructure
    A2P010: Annual energy demand for urban infrastructure [GWh/annum]
    A2P011: Annual renewable electricity production on-site during target year
    A2P011: PVnoyesyesyesnoyesyes
    A2P011: PV - specify production in GWh/annum [GWh/annum]0.180.7770664
    A2P011: Windnonononononono
    A2P011: Wind - specify production in GWh/annum [GWh/annum]
    A2P011: Hydrononononononono
    A2P011: Hydro - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_elnonononononono
    A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_peat_elnonononononono
    A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
    A2P011: PVT_elnonononononono
    A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
    A2P011: Othernonononononono
    A2P011: Other - specify production in GWh/annum [GWh/annum]
    A2P012: Annual renewable thermal production on-site during target year
    A2P012: Geothermalyesnononononoyes
    A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Solar Thermalyesyesnonononono
    A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_heatyesnononononono
    A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
    A2P012: Waste heat+HPyesnononononono
    A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_peat_heatnonononononono
    A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: PVT_thyesnononononono
    A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_firewood_thnonononononono
    A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Othernonoyesnononono
    A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
    A2P013: Renewable resources on-site - Additional notes
    A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centersOnly PVs - 940 PVs on the main building
    A2P014: Annual energy use
    A2P014: Annual energy use [GWh/annum]0.0000484410.819016
    A2P015: Annual energy delivered
    A2P015: Annual energy delivered [GWh/annum]0.000113331
    A2P016: Annual non-renewable electricity production on-site during target year
    A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0-1
    A2P017: Annual non-renewable thermal production on-site during target year
    A2P017: Gasnononoyesnonono
    A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Coalnonononononono
    A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Oilnonononononono
    A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Othernonoyesnononono
    A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P018: Annual renewable electricity imports from outside the boundary during target year
    A2P018: PVnonononononono
    A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
    A2P018: Windnonononononono
    A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
    A2P018: Hydrononononononono
    A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_elnonononononono
    A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_peat_elnonononononono
    A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: PVT_elnonononononono
    A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Othernonoyesnononono
    A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
    A2P019: Annual renewable thermal imports from outside the boundary during target year
    A2P019: Geothermalnonononononono
    A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Solar Thermalnonononononono
    A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_heatnonononononono
    A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Waste heat+HPnonononononono
    A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_peat_heatnonononononono
    A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: PVT_thnonononononono
    A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_firewood_thnonononononono
    A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Othernonoyesnononono
    A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
    A2P020: Share of RES on-site / RES outside the boundary
    A2P020: Share of RES on-site / RES outside the boundary0000000
    A2P021: GHG-balance calculated for the PED
    A2P021: GHG-balance calculated for the PED [tCO2/annum]-6.035
    A2P022: KPIs related to the PED case study / PED Lab
    A2P022: Safety & SecurityyesPersonal Safety
    A2P022: HealthyesHealthy community + Indoor Evironmental Quality (indoor air quality, thermal comfort, lighting and visual comfort)CO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levels
    A2P022: Educationyes
    A2P022: MobilityyesSustainable mobility
    A2P022: EnergyyesEnergy and environmental performance (non-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/ self-consumption, net energy/net power. peak delivered(peak exported power, connection capacity credit, total greenhouse gas emissionsNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissions
    A2P022: Wateryes
    A2P022: Economic developmentyesEconomic Performance: capital costs, operational costs, overall performanceInvestment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost Comparison
    A2P022: Housing and Communitydemopraphic composiiton, diverse community, social cohesion access to amenities, access to services, afordability of energy, affordability of shousing, living conditions, universal design, energy consciousnessAccess to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousness
    A2P022: Waste
    A2P022: OtherSmartness and Flexibility
    A2P023: Technological Solutions / Innovations - Energy Generation
    A2P023: Photovoltaicsyesyesyesyesnoyesyes
    A2P023: Solar thermal collectorsyesyesyesnononono
    A2P023: Wind Turbinesnonononononono
    A2P023: Geothermal energy systemyesnonononoyesyes
    A2P023: Waste heat recoveryyesnononononono
    A2P023: Waste to energyyesnononononono
    A2P023: Polygenerationnonoyesnononono
    A2P023: Co-generationnonoyesnononono
    A2P023: Heat Pumpyesyesyesnoyesyesno
    A2P023: Hydrogennonononononono
    A2P023: Hydropower plantnonononononono
    A2P023: Biomassnonononononono
    A2P023: Biogasnonononononono
    A2P023: Other
    A2P024: Technological Solutions / Innovations - Energy Flexibility
    A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesyesnoyesno
    A2P024: Energy management systemyesyesyesyesnoyesyes
    A2P024: Demand-side managementyesnoyesnonoyesyes
    A2P024: Smart electricity gridnonoyesyesnonoyes
    A2P024: Thermal Storageyesnononononono
    A2P024: Electric Storageyesyesyesyesnonono
    A2P024: District Heating and Coolingyesnononoyesnono
    A2P024: Smart metering and demand-responsive control systemsyesyesyesnonoyesno
    A2P024: P2P – buildingsnonoyesnononoyes
    A2P024: Other
    A2P025: Technological Solutions / Innovations - Energy Efficiency
    A2P025: Deep Retrofittingnoyesyesnononono
    A2P025: Energy efficiency measures in historic buildingsyesnononononono
    A2P025: High-performance new buildingsyesnonononoyesyes
    A2P025: Smart Public infrastructure (e.g. smart lighting)yesyesyesnononono
    A2P025: Urban data platformsyesnoyesnononono
    A2P025: Mobile applications for citizensnonononononono
    A2P025: Building services (HVAC & Lighting)noyesyesyesnoyesyes
    A2P025: Smart irrigationnonononononono
    A2P025: Digital tracking for waste disposalnoyesnonononono
    A2P025: Smart surveillancenonononononono
    A2P025: Other
    A2P026: Technological Solutions / Innovations - Mobility
    A2P026: Efficiency of vehicles (public and/or private)noyesyesyesnonono
    A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonoyesnononoyes
    A2P026: e-Mobilityyesyesyesnononoyes
    A2P026: Soft mobility infrastructures and last mile solutionsnonononononono
    A2P026: Car-free areanonononononono
    A2P026: Other
    A2P027: Mobility strategies - Additional notes
    A2P027: Mobility strategies - Additional notesThe new mobility plan integrates the PED areaShared mobility: a mobility point will be implemented and ensure the flexible use of different mobility services.
    A2P028: Energy efficiency certificates
    A2P028: Energy efficiency certificatesYesYesYesYesYes
    A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateThe Municipal Buildings have an energy certificate, according to the Portuguese legislation.NS3700 Norwegian Passive HouseEnergy Performance Certificate
    A2P029: Any other building / district certificates
    A2P029: Any other building / district certificatesNoYesYes
    A2P029: If yes, please specify and/or enter notesKlimaaktiv certificate, Greenpass certificate
    A3P001: Relevant city /national strategy
    A3P001: Relevant city /national strategy
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Urban Renewal Strategies,
    • Energy master planning (SECAP, etc.),
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract)
    • Smart cities strategies,
    • Urban Renewal Strategies,
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies,
    • New development strategies
    A3P002: Quantitative targets included in the city / national strategy
    A3P002: Quantitative targets included in the city / national strategy40% reduction in emissions by 2030 according to the Covenant of Mayors
    A3P003: Strategies towards decarbonization of the gas grid
    A3P003: Strategies towards decarbonization of the gas grid
    • Electrification of Heating System based on Heat Pumps,
    • Electrification of Cooking Methods,
    • Biogas
    • Other
    • Electrification of Heating System based on Heat Pumps
    • Electrification of Heating System based on Heat Pumps
    • Electrification of Heating System based on Heat Pumps
    A3P003: OtherAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.
    A3P004: Identification of needs and priorities
    A3P004: Identification of needs and priorities- Thermal rehabilitation - Heat pumps - Smart system capable o various connections and data export - Usage of the energy produced by PVs placed on 3 buildings within the PED-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
    A3P005: Sustainable behaviour
    A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.- Education - Replacement of the non-performant PVs - Professional maintenance of the PV system - Reduce of consumptions - Intelligent systems to recover heat - Intelligent system to permit the usage of domestic water from the heating system-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.
    A3P006: Economic strategies
    A3P006: Economic strategies
    • Innovative business models,
    • Blockchain
    • Innovative business models,
    • PPP models,
    • Existing incentives
    • Open data business models,
    • Innovative business models,
    • Life Cycle Cost,
    • Circular economy models,
    • Demand management Living Lab
    • Demand management Living Lab
    • Innovative business models,
    • Local trading
    A3P006: Other
    A3P007: Social models
    A3P007: Social models
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Citizen Social Research,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance
    • Co-creation / Citizen engagement strategies,
    • Prevention of energy poverty,
    • Digital Inclusion,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Policy Forums,
    • Social incentives,
    • Quality of Life,
    • Strategies towards social mix,
    • Affordability,
    • Prevention of energy poverty,
    • Digital Inclusion,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Digital Inclusion,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Strategies towards (local) community-building,
    • Behavioural Change / End-users engagement,
    • Social incentives,
    • Quality of Life,
    • Strategies towards social mix,
    • Affordability,
    • Citizen/owner involvement in planning and maintenance
    A3P007: Other
    A3P008: Integrated urban strategies
    A3P008: Integrated urban strategies
    • Strategic urban planning,
    • District Energy plans,
    • City Vision 2050,
    • SECAP Updates
    • City Vision 2050,
    • SECAP Updates,
    • Building / district Certification
    • Strategic urban planning,
    • District Energy plans,
    • City Vision 2050,
    • SECAP Updates,
    • Building / district Certification
    • Building / district Certification
    A3P008: Other
    A3P009: Environmental strategies
    A3P009: Environmental strategies
    • Energy Neutral
    • Energy Neutral,
    • Net zero carbon footprint,
    • Pollutants Reduction
    • Energy Neutral,
    • Low Emission Zone,
    • Net zero carbon footprint,
    • Carbon-free,
    • Life Cycle approach,
    • Pollutants Reduction,
    • Greening strategies,
    • Sustainable Urban drainage systems (SUDS),
    • Cool Materials,
    • Nature Based Solutions (NBS)
    • Energy Neutral,
    • Low Emission Zone,
    • Pollutants Reduction,
    • Greening strategies
    • Energy Neutral,
    • Carbon-free
    • Energy Neutral,
    • Low Emission Zone
    A3P009: Other
    A3P010: Legal / Regulatory aspects
    A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.
    B1P001: PED/PED relevant concept definition
    B1P001: PED/PED relevant concept definitionPositive energy districtThe case study follows the concept of syn.ikia with sustainable plus energy neighbourhoods (SPEN) and aims to reach a plus energy balance based on EPB uses on an annual basis.
    B1P002: Motivation behind PED/PED relevant project development
    B1P002: Motivation behind PED/PED relevant project developmentCreation of an area which aims to be sustainable in terms of energy sufficiency and efficiency.The developers call their concept for Future Living, where the neighbourhood consist of highly energy-efficient buildings, is supplied with renewable energy onsite and includes green areas for well-being.
    B1P003: Environment of the case study area
    B2P003: Environment of the case study areaUrban areaSuburban areaSuburban areaSuburban area
    B1P004: Type of district
    B2P004: Type of district
    • Renovation
    • Renovation
    • New construction
    • New construction
    B1P005: Case Study Context
    B1P005: Case Study Context
    • Retrofitting Area
    • Retrofitting Area
    • New Development
    • New Development
    B1P006: Year of construction
    B1P006: Year of construction19762024
    B1P007: District population before intervention - Residential
    B1P007: District population before intervention - Residential
    B1P008: District population after intervention - Residential
    B1P008: District population after intervention - Residential
    B1P009: District population before intervention - Non-residential
    B1P009: District population before intervention - Non-residential
    B1P010: District population after intervention - Non-residential
    B1P010: District population after intervention - Non-residential
    B1P011: Population density before intervention
    B1P011: Population density before intervention0000000
    B1P012: Population density after intervention
    B1P012: Population density after intervention0000000
    B1P013: Building and Land Use before intervention
    B1P013: Residentialnonononononono
    B1P013 - Residential: Specify the sqm [m²]
    B1P013: Officenonononononono
    B1P013 - Office: Specify the sqm [m²]
    B1P013: Industry and Utilitynononononoyesno
    B1P013 - Industry and Utility: Specify the sqm [m²]whole site was used for idustry and excavation
    B1P013: Commercialnonononononono
    B1P013 - Commercial: Specify the sqm [m²]
    B1P013: Institutionalnonoyesnononono
    B1P013 - Institutional: Specify the sqm [m²]
    B1P013: Natural areasnonononononoyes
    B1P013 - Natural areas: Specify the sqm [m²]
    B1P013: Recreationalnonononononono
    B1P013 - Recreational: Specify the sqm [m²]
    B1P013: Dismissed areasnonononononono
    B1P013 - Dismissed areas: Specify the sqm [m²]
    B1P013: Othernonononononono
    B1P013 - Other: Specify the sqm [m²]
    B1P014: Building and Land Use after intervention
    B1P014: Residentialnononononoyesyes
    B1P014 - Residential: Specify the sqm [m²]
    B1P014: Officenonononononono
    B1P014 - Office: Specify the sqm [m²]
    B1P014: Industry and Utilitynonononononono
    B1P014 - Industry and Utility: Specify the sqm [m²]
    B1P014: Commercialnonononononono
    B1P014 - Commercial: Specify the sqm [m²]
    B1P014: Institutionalnonoyesnononono
    B1P014 - Institutional: Specify the sqm [m²]
    B1P014: Natural areasnonononononoyes
    B1P014 - Natural areas: Specify the sqm [m²]
    B1P014: Recreationalnonononononono
    B1P014 - Recreational: Specify the sqm [m²]
    B1P014: Dismissed areasnonononononono
    B1P014 - Dismissed areas: Specify the sqm [m²]
    B1P014: Othernonononononono
    B1P014 - Other: Specify the sqm [m²]
    B2P001: PED Lab concept definition
    B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
    B2P002: Installation life time
    B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.Permanent installation
    B2P003: Scale of action
    B2P003: ScaleDistrictVirtualVirtualDistrict
    B2P004: Operator of the installation
    B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.CM Maia, IPMAIA, NEW, AdEP.IREC
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
    B2P006: Circular Economy Approach
    B2P006: Do you apply any strategy to reuse and recycling the materials?NoNoNo
    B2P006: Other
    B2P007: Motivation for developing the PED Lab
    B2P007: Motivation for developing the PED Lab
    • Civic
    • Strategic
    • Strategic,
    • Private
    B2P007: Other
    B2P008: Lead partner that manages the PED Lab
    B2P008: Lead partner that manages the PED LabMunicipalityMunicipalityResearch center/University
    B2P008: Other
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Collaborative partners that participate in the PED Lab
    • Academia,
    • Private,
    • Industrial,
    • Other
    • Academia,
    • Private,
    • Industrial,
    • Citizens, public, NGO,
    • Other
    B2P009: Otherresearch companies, monitoring company, ict companyEnergy Agency
    B2P010: Synergies between the fields of activities
    B2P010: Synergies between the fields of activities
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Available facilities to test urban configurations in PED Lab
    • Buildings,
    • Demand-side management,
    • Energy storage,
    • Energy networks,
    • Waste management,
    • Lighting,
    • E-mobility,
    • Information and Communication Technologies (ICT),
    • Social interactions,
    • Business models
    • Buildings,
    • Demand-side management,
    • Prosumers,
    • Renewable generation,
    • Energy storage,
    • Efficiency measures,
    • Lighting,
    • E-mobility,
    • Information and Communication Technologies (ICT),
    • Ambient measures,
    • Social interactions
    • Demand-side management,
    • Energy storage,
    • Energy networks,
    • Efficiency measures,
    • Information and Communication Technologies (ICT)
    B2P011: Other
    B2P012: Incubation capacities of PED Lab
    B2P012: Incubation capacities of PED Lab
    • Tools for prototyping and modelling
    • Monitoring and evaluation infrastructure,
    • Tools, spaces, events for testing and validation
    • Monitoring and evaluation infrastructure,
    • Tools for prototyping and modelling,
    • Tools, spaces, events for testing and validation
    B2P013: Availability of the facilities for external people
    B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
    B2P014: Monitoring measures
    B2P014: Monitoring measures
    • Execution plan,
    • Available data,
    • Type of measured data,
    • Equipment,
    • Level of access
    • Execution plan,
    • Available data,
    • Type of measured data
    • Equipment
    B2P015: Key Performance indicators
    B2P015: Key Performance indicators
    • Energy,
    • Social,
    • Economical / Financial
    • Energy,
    • Environmental,
    • Social,
    • Economical / Financial
    • Energy,
    • Environmental
    B2P016: Execution of operations
    B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
    B2P017: Capacities
    B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
    B2P018: Relations with stakeholders
    B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
    B2P019: Available tools
    B2P019: Available tools
    • Energy modelling,
    • Social models,
    • Business and financial models
    • Energy modelling,
    • Social models,
    • Business and financial models,
    • Fundraising and accessing resources,
    • Matching actors
    • Energy modelling
    B2P019: Available tools
    B2P020: External accessibility
    B2P020: External accessibility
    C1P001: Unlocking Factors
    C1P001: Recent technological improvements for on-site RES production3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
    C1P001: Energy Communities, P2P, Prosumers concepts4 - Important4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Storage systems and E-mobility market penetration4 - Important4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Decreasing costs of innovative materials5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Financial mechanisms to reduce costs and maximize benefits5 - Very important4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Social acceptance (top-down)3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Multidisciplinary approaches available for systemic integration2 - Slightly important4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Availability of RES on site (Local RES)4 - Important4 - Important4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant
    C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS (if any)
    C1P002: Driving Factors
    C1P002: Climate Change adaptation need2 - Slightly important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant
    C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P002: Urban re-development of existing built environment4 - Important4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P002: Economic growth need2 - Slightly important4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant4 - Important2 - Slightly important4 - Important1 - Unimportant4 - Important1 - Unimportant
    C1P002: Territorial and market attractiveness2 - Slightly important4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P002: Energy autonomy/independence2 - Slightly important4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P002: Any other DRIVING FACTOR4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
    C1P003: Administrative barriers
    C1P003: Difficulty in the coordination of high number of partners and authorities3 - Moderately important5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Lack of public participation1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Lack of institutions/mechanisms to disseminate information2 - Slightly important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003:Long and complex procedures for authorization of project activities4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Complicated and non-comprehensive public procurement3 - Moderately important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Fragmented and or complex ownership structure4 - Important5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important5 - Very important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Lack of internal capacities to support energy transition1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER (if any)
    C1P004: Policy barriers
    C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Lack of Cooperation & support between national-regional-local entities2 - Slightly important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER (if any)
    C1P005: Legal and Regulatory barriers
    C1P005: Inadequate regulations for new technologies4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
    C1P005: Regulatory instability3 - Moderately important4 - Important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Non-effective regulations3 - Moderately important4 - Important2 - Slightly important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
    C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Insufficient or insecure financial incentives3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Shortage of proven and tested solutions and examples2 - Slightly important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER (if any)
    C1P006: Environmental barriers
    C1P006: Environmental barriers
    C1P007: Technical barriers
    C1P007: Lack of skilled and trained personnel4 - Important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Deficient planning2 - Slightly important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Retrofitting work in dwellings in occupied state2 - Slightly important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Lack of well-defined process3 - Moderately important4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Inaccuracy in energy modelling and simulation4 - Important4 - Important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Lack/cost of computational scalability1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Grid congestion, grid instability4 - Important4 - Important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Negative effects of project intervention on the natural environment1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Energy retrofitting work in dense and/or historical urban environment3 - Moderately important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Difficult definition of system boundaries1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER (if any)
    C1P008: Social and Cultural barriers
    C1P008: Inertia2 - Slightly important3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Low acceptance of new projects and technologies2 - Slightly important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Difficulty of finding and engaging relevant actors2 - Slightly important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Lack of trust beyond social network4 - Important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Rebound effect2 - Slightly important4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Exclusion of socially disadvantaged groups5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Non-energy issues are more important and urgent for actors4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER (if any)
    C1P009: Information and Awareness barriers
    C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: Lack of awareness among authorities2 - Slightly important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: High costs of design, material, construction, and installation4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER (if any)
    C1P010: Financial barriers
    C1P010: Hidden costs2 - Slightly important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Insufficient external financial support and funding for project activities3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Economic crisis1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Risk and uncertainty3 - Moderately important4 - Important2 - Slightly important5 - Very important1 - Unimportant4 - Important1 - Unimportant
    C1P010: Lack of consolidated and tested business models3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Limited access to capital and cost disincentives2 - Slightly important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER (if any)
    C1P011: Market barriers
    C1P011: Split incentives5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P011: Energy price distortion4 - Important4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P011: Any other Market BARRIER (if any)
    C1P012: Stakeholders involved
    C1P012: Government/Public Authorities
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Research & Innovation
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Financial/Funding
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Analyst, ICT and Big Data
    • Design/demand aggregation,
    • Monitoring/operation/management
    C1P012: Business process management
    • Planning/leading
    C1P012: Urban Services providers
    • Design/demand aggregation,
    • Monitoring/operation/management
    C1P012: Real Estate developers
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Design/Construction companies
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: End‐users/Occupants/Energy Citizens
    • None
    C1P012: Social/Civil Society/NGOs
    • Planning/leading,
    • Design/demand aggregation
    C1P012: Industry/SME/eCommerce
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Other
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Other (if any)
    Summary

    Authors (framework concept)

    Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

    Contributors (to the content)

    Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

    Implemented by

    Boutik.pt: Filipe Martins, Jamal Khan
    Marek Suchánek (Czech Technical University in Prague)