Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Uncompare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Uncompare
Graz, Reininghausgründe PED Case Study Uncompare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleGroningen, PED North
Barcelona, SEILAB & Energy SmartLab
Graz, Reininghausgründe
Zero Village Bergen (ZVB)
Innsbruck, Campagne-Areal
Stor-Elvdal, Campus Evenstad
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabGroningen, PED NorthBarcelona, SEILAB & Energy SmartLabGraz, ReininghausgründeZero Village Bergen (ZVB)Innsbruck, Campagne-ArealStor-Elvdal, Campus Evenstad
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesyesnono
PED relevant case studynonononoyesyes
PED Lab.yesyesnononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesnoyesyesyesyes
Annual energy surplusyesnonononoyes
Energy communityyesyesnononono
Circularityyesnonononono
Air quality and urban comfortnononononono
Electrificationnoyesnononono
Net-zero energy costnononononono
Net-zero emissionyesyesnoyesyesno
Self-sufficiency (energy autonomous)noyesnononono
Maximise self-sufficiencynononononono
Othernoyesnoyesnoyes
Other (A1P004)Green ITSustainable neighbourhood; Energy efficientEnergy-flexibility
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseIn operationImplementation PhasePlanning PhaseCompletedIn operation
A1P006: Start Date
A1P006: Start date12/1801/2011201904/1601/13
A1P007: End Date
A1P007: End date12/2302/2013202504/2212/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • General statistical datasets
  • GIS open datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Meteorological open data
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
  • E. Rainer, H. Schnitzer, T. Mach, T. Wieland, M. Reiter, L. Fickert, E. Schmautzer, A. Passer, H. Oblak, H. Kreiner, R. Lazar, M. Duschek, et al. (2015): Rahmenplan Energy City Graz-Reininghaus – Subprojekt 2 des Leitprojektes „ECR Energy City Graz – Reininghaus Online: Rahmenplan Energy City Graz-Reininghaus - Haus der Zukunft (nachhaltigwirtschaften.at),
  • H.Schnitzer et al. (2016): Arbeiten und Wohnen in der Smart City Reininghaus, Online: Arbeiten und Wohnen in Graz Reininghaus - Smartcities
A1P011: Geographic coordinates
X Coordinate (longitude):6.5351212.115.4074405.25558911.42434673814025611.078770773531746
Y Coordinate (latitude):53.23484641.347.060760.27605747.27147078672910461.42604420399112
A1P012: Country
A1P012: CountryNetherlandsSpainAustriaNorwayAustriaNorway
A1P013: City
A1P013: CityGroningenBarcelona and TarragonaGrazBergenInnsbruckEvenstad, Stor-Elvdal municipality
A1P014: Climate Zone (Köppen Geiger classification)
A1P014: Climate Zone (Köppen Geiger classification).CfaCsaDfbCfbDfbDwc
A1P015: District boundary
A1P015: District boundaryFunctionalVirtualGeographicGeographicGeographic
Other
A1P016: Ownership of the case study/PED Lab
A1P016: Ownership of the case study/PED Lab:MixedPublicMixedPrivateMixedPublic
A1P017: Ownership of the land / physical infrastructure
A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersSingle Owner
A1P018: Number of buildings in PED
A1P018: Number of buildings in PED70100422
A1P019: Conditioned space
A1P019: Conditioned space [m²]1.012227710000
A1P020: Total ground area
A1P020: Total ground area [m²]17.132100000037800011351
A1P021: Floor area ratio: Conditioned space / total ground area
A1P021: Floor area ratio: Conditioned space / total ground area000020
A1P022: Financial schemes
A1P022a: Financing - PRIVATE - Real estateyesnoyesyesnono
A1P022a: Add the value in EUR if available [EUR]
A1P022b: Financing - PRIVATE - ESCO schemenononononono
A1P022b: Add the value in EUR if available [EUR]
A1P022c: Financing - PRIVATE - Otheryesnonononono
A1P022c: Add the value in EUR if available [EUR]
A1P022d: Financing - PUBLIC - EU structural fundingnononononono
A1P022d: Add the value in EUR if available [EUR]
A1P022e: Financing - PUBLIC - National fundingyesnoyesnonoyes
A1P022e: Add the value in EUR if available [EUR]
A1P022f: Financing - PUBLIC - Regional fundingnononononono
A1P022f: Add the value in EUR if available [EUR]
A1P022g: Financing - PUBLIC - Municipal fundingyesnoyesnonono
A1P022g: Add the value in EUR if available [EUR]
A1P022h: Financing - PUBLIC - Othernononononono
A1P022h: Add the value in EUR if available [EUR]
A1P022i: Financing - RESEARCH FUNDING - EUyesnonononono
A1P022i: Add the value in EUR if available [EUR]
A1P022j: Financing - RESEARCH FUNDING - Nationalnonononoyesyes
A1P022j: Add the value in EUR if available [EUR]
A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononono
A1P022k: Add the value in EUR if available [EUR]
A1P022l: Financing - RESEARCH FUNDING - Othernononononono
A1P022l: Add the value in EUR if available [EUR]
A1P022: Other
A1P023: Economic Targets
A1P023: Economic Targets
  • Boosting local businesses,
  • Boosting local and sustainable production
  • Job creation,
  • Boosting local and sustainable production
  • Job creation,
  • Boosting local businesses,
  • Boosting consumption of local and sustainable products
  • Job creation,
  • Other
  • Boosting local businesses,
  • Boosting local and sustainable production
A1P023: OtherCreate affordable appartments for the citizens
A1P024: More comments:
A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.The “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning.Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2
A1P025: Estimated PED case study / PED LAB costs
A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
Contact person for general enquiries
A1P026: NameJasper Tonen, Elisabeth KoopsDr. Jaume Salom, Dra. Cristina CorcheroKatharina SchwarzChristoph GollnerGeorgios DermentzisÅse Lekang Sørensen
A1P027: OrganizationMunicipality of GroningenIRECStadtLABOR, Innovationen für urbane Lebensqualität GmbHFFGUniversity of InnsbruckSINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities
A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversitySME / IndustryOtherResearch Center / UniversityResearch Center / University
A1P028: Other
A1P029: EmailJasper.tonen@groningen.nlJsalom@irec.catkatharina.schwarz@stadtlaborgraz.atchristoph.gollner@ffg.atGeorgios.Dermentzis@uibk.ac.atase.sorensen@sintef.no
Contact person for other special topics
A1P030: NameHans Schnitzer
A1P031: Emailhans.schnitzer@stadtlaborgraz.at
Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
A2P001: Fields of application
A2P001: Fields of application
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Waste management
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies
  • Energy efficiency,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Water use,
  • Indoor air quality,
  • Other
  • Energy efficiency,
  • Energy flexibility,
  • Energy production
  • Energy efficiency,
  • Energy production,
  • Indoor air quality
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies,
  • Construction materials
A2P001: OtherUrban Management; Air Quality
A2P002: Tools/strategies/methods applied for each of the above-selected fields
A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsEnergy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)Energy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the districtThe buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed.Campus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.
A2P003: Application of ISO52000
A2P003: Application of ISO52000NoNoNoNo
A2P004: Appliances included in the calculation of the energy balance
A2P004: Appliances included in the calculation of the energy balanceNoYesYesYesYes
A2P005: Mobility included in the calculation of the energy balance
A2P005: Mobility included in the calculation of the energy balanceNoYesYesNoYes
A2P006: Description of how mobility is included (or not included) in the calculation
A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah- Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets)At Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.
A2P007: Annual energy demand in buildings / Thermal demand
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.30.390.77
A2P008: Annual energy demand in buildings / Electric Demand
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.330.6550.76
A2P009: Annual energy demand for e-mobility
A2P009: Annual energy demand for e-mobility [GWh/annum]0
A2P010: Annual energy demand for urban infrastructure
A2P010: Annual energy demand for urban infrastructure [GWh/annum]
A2P011: Annual renewable electricity production on-site during target year
A2P011: PVnoyesyesnoyesyes
A2P011: PV - specify production in GWh/annum [GWh/annum]0.420.065
A2P011: Windnononononono
A2P011: Wind - specify production in GWh/annum [GWh/annum]
A2P011: Hydronononononono
A2P011: Hydro - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_elnononononoyes
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
A2P011: Biomass_peat_elnononononono
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
A2P011: PVT_elnononononono
A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
A2P011: Othernononononono
A2P011: Other - specify production in GWh/annum [GWh/annum]
A2P012: Annual renewable thermal production on-site during target year
A2P012: Geothermalyesnoyesnonono
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Solar Thermalyesnoyesnonoyes
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.045
A2P012: Biomass_heatyesnonononoyes
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.10.35
A2P012: Waste heat+HPyesnoyesnonono
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_peat_heatnononononono
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: PVT_thyesnonononono
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_firewood_thnononononono
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Othernononononono
A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
A2P013: Renewable resources on-site - Additional notes
A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centersGroundwater (used for heat pumps)Listed values are measurements from 2018. Renewable energy share is increasing.
A2P014: Annual energy use
A2P014: Annual energy use [GWh/annum]0.961.500
A2P015: Annual energy delivered
A2P015: Annual energy delivered [GWh/annum]-21
A2P016: Annual non-renewable electricity production on-site during target year
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]
A2P017: Annual non-renewable thermal production on-site during target year
A2P017: Gasnoyesnononono
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Coalnononononono
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Oilnononononono
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Othernononononono
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P018: Annual renewable electricity imports from outside the boundary during target year
A2P018: PVnonoyesnonono
A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
A2P018: Windnonoyesnonono
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
A2P018: Hydrononoyesnonono
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_elnononononono
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_peat_elnononononono
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
A2P018: PVT_elnononononono
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Othernononononono
A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
A2P019: Annual renewable thermal imports from outside the boundary during target year
A2P019: Geothermalnononononono
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Solar Thermalnonoyesnonono
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_heatnonoyesnonono
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: Waste heat+HPnonoyesnonono
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_peat_heatnononononono
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: PVT_thnononononono
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_firewood_thnononononono
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Othernononononono
A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
A2P020: Share of RES on-site / RES outside the boundary
A2P020: Share of RES on-site / RES outside the boundary000000
A2P021: GHG-balance calculated for the PED
A2P021: GHG-balance calculated for the PED [tCO2/annum]0.036
A2P022: KPIs related to the PED case study / PED Lab
A2P022: Safety & Security
A2P022: Healthindoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold.
A2P022: Education
A2P022: MobilityxMode of transport; Access to public transport
A2P022: EnergyxEnergy efficiency in buildings; Net energy need; Gross energy need; Total energy needSpace heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production.
A2P022: Waterx
A2P022: Economic developmentx
A2P022: Housing and CommunityxDelivery and proximity to amenities
A2P022: Waste
A2P022: OtherGHG emissions; Power/load; Life cycle cost (LCC); Demographic needs and consultation plan; Public Space
A2P023: Technological Solutions / Innovations - Energy Generation
A2P023: Photovoltaicsyesyesyesyesyesyes
A2P023: Solar thermal collectorsyesnonoyesnoyes
A2P023: Wind Turbinesnononononono
A2P023: Geothermal energy systemyesnonononono
A2P023: Waste heat recoveryyesnoyesnonono
A2P023: Waste to energyyesnonononono
A2P023: Polygenerationnononononono
A2P023: Co-generationnononononoyes
A2P023: Heat Pumpyesnoyesnoyesno
A2P023: Hydrogennononononono
A2P023: Hydropower plantnononononono
A2P023: Biomassnononononoyes
A2P023: Biogasnononononono
A2P023: OtherThe Co-generation is biomass based.
A2P024: Technological Solutions / Innovations - Energy Flexibility
A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesnonoyes
A2P024: Energy management systemyesyesnononoyes
A2P024: Demand-side managementyesnonononoyes
A2P024: Smart electricity gridnoyesnononono
A2P024: Thermal Storageyesnoyesyesyesyes
A2P024: Electric Storageyesyesnononoyes
A2P024: District Heating and Coolingyesnoyesnoyesyes
A2P024: Smart metering and demand-responsive control systemsyesnonononoyes
A2P024: P2P – buildingsnonononoyesno
A2P024: OtherBidirectional electric vehicle (EV) charging (V2G)
A2P025: Technological Solutions / Innovations - Energy Efficiency
A2P025: Deep Retrofittingnononononono
A2P025: Energy efficiency measures in historic buildingsyesnonononono
A2P025: High-performance new buildingsyesnoyesnoyesyes
A2P025: Smart Public infrastructure (e.g. smart lighting)yesnoyesnonono
A2P025: Urban data platformsyesnonononono
A2P025: Mobile applications for citizensnonoyesnonono
A2P025: Building services (HVAC & Lighting)noyesnonoyesno
A2P025: Smart irrigationnonoyesnonono
A2P025: Digital tracking for waste disposalnononononono
A2P025: Smart surveillancenononononono
A2P025: Other
A2P026: Technological Solutions / Innovations - Mobility
A2P026: Efficiency of vehicles (public and/or private)noyesyesnonono
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonoyesnonono
A2P026: e-Mobilityyesnoyesnonoyes
A2P026: Soft mobility infrastructures and last mile solutionsnonoyesnonono
A2P026: Car-free areanonoyesnonono
A2P026: Other
A2P027: Mobility strategies - Additional notes
A2P027: Mobility strategies - Additional notes- Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District management
A2P028: Energy efficiency certificates
A2P028: Energy efficiency certificatesYesYesYesYes
A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateEnergieausweis mandatory if buildings/ flats/ apartments are soldTwo buildings are certified "Passive House new build"Passive house (2 buildings, 4 200 m2, from 2015)
A2P029: Any other building / district certificates
A2P029: Any other building / district certificatesYesNoYes
A2P029: If yes, please specify and/or enter notesKlimaaktiv standard  Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/goldZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)
A3P001: Relevant city /national strategy
A3P001: Relevant city /national strategy
  • Energy master planning (SECAP, etc.),
  • New development strategies,
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • New development strategies
  • Smart cities strategies,
  • Energy master planning (SECAP, etc.),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • New development strategies
  • Smart cities strategies
  • Promotion of energy communities (REC/CEC),
  • National / international city networks addressing sustainable urban development and climate neutrality
A3P002: Quantitative targets included in the city / national strategy
A3P002: Quantitative targets included in the city / national strategyCity level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supply
A3P003: Strategies towards decarbonization of the gas grid
A3P003: Strategies towards decarbonization of the gas grid
  • Electrification of Heating System based on Heat Pumps,
  • Electrification of Cooking Methods,
  • Biogas
  • Electrification of Heating System based on Heat Pumps,
  • Electrification of Cooking Methods,
  • Biogas
  • Electrification of Heating System based on Heat Pumps,
  • Other
A3P003: OtherDistrict heating based mainly on heat pumps and renewable sources
A3P004: Identification of needs and priorities
A3P004: Identification of needs and priorities-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.Reininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared officesThe priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems.
A3P005: Sustainable behaviour
A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.- citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus.
A3P006: Economic strategies
A3P006: Economic strategies
  • Innovative business models,
  • Blockchain
  • Demand management Living Lab
  • PPP models,
  • Local trading
A3P006: Other
A3P007: Social models
A3P007: Social models
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Citizen Social Research,
  • Prevention of energy poverty,
  • Citizen/owner involvement in planning and maintenance
  • Digital Inclusion,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Social incentives,
  • Quality of Life,
  • Affordability,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Co-creation / Citizen engagement strategies,
  • Social incentives,
  • Affordability,
  • Prevention of energy poverty,
  • Citizen/owner involvement in planning and maintenance
  • Behavioural Change / End-users engagement,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
  • Other
A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
A3P008: Integrated urban strategies
A3P008: Integrated urban strategies
  • Strategic urban planning,
  • District Energy plans,
  • City Vision 2050,
  • SECAP Updates
  • Strategic urban planning,
  • City Vision 2050,
  • Building / district Certification
A3P008: Other
A3P009: Environmental strategies
A3P009: Environmental strategies
  • Energy Neutral
  • Energy Neutral,
  • Low Emission Zone,
  • Pollutants Reduction,
  • Greening strategies
  • Pollutants Reduction,
  • Greening strategies,
  • Sustainable Urban drainage systems (SUDS),
  • Nature Based Solutions (NBS)
  • Energy Neutral,
  • Low Emission Zone
  • Low Emission Zone
A3P009: Other
A3P010: Legal / Regulatory aspects
A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.Mobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city.Campus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.
B1P001: PED/PED relevant concept definition
B1P001: PED/PED relevant concept definitionReininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.Extremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation.The biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.
B1P002: Motivation behind PED/PED relevant project development
B1P002: Motivation behind PED/PED relevant project developmentThe Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well.Since it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial.In line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.
B1P003: Environment of the case study area
B2P003: Environment of the case study areaUrban areaSuburban areaUrban areaRural
B1P004: Type of district
B2P004: Type of district
  • New construction
  • New construction
  • New construction
  • New construction,
  • Renovation
B1P005: Case Study Context
B1P005: Case Study Context
  • New Development
  • New Development
  • Re-use / Transformation Area,
  • New Development
  • Retrofitting Area
B1P006: Year of construction
B1P006: Year of construction20252022
B1P007: District population before intervention - Residential
B1P007: District population before intervention - Residential0
B1P008: District population after intervention - Residential
B1P008: District population after intervention - Residential10000780
B1P009: District population before intervention - Non-residential
B1P009: District population before intervention - Non-residential0
B1P010: District population after intervention - Non-residential
B1P010: District population after intervention - Non-residential
B1P011: Population density before intervention
B1P011: Population density before intervention000000
B1P012: Population density after intervention
B1P012: Population density after intervention000.0100.0687164126508680
B1P013: Building and Land Use before intervention
B1P013: Residentialnononononono
B1P013 - Residential: Specify the sqm [m²]
B1P013: Officenononononono
B1P013 - Office: Specify the sqm [m²]
B1P013: Industry and Utilitynonoyesnonono
B1P013 - Industry and Utility: Specify the sqm [m²]
B1P013: Commercialnononononono
B1P013 - Commercial: Specify the sqm [m²]
B1P013: Institutionalnononononono
B1P013 - Institutional: Specify the sqm [m²]
B1P013: Natural areasnonoyesyesnono
B1P013 - Natural areas: Specify the sqm [m²]
B1P013: Recreationalnononononono
B1P013 - Recreational: Specify the sqm [m²]
B1P013: Dismissed areasnononononono
B1P013 - Dismissed areas: Specify the sqm [m²]
B1P013: Othernononononono
B1P013 - Other: Specify the sqm [m²]
B1P014: Building and Land Use after intervention
B1P014: Residentialnonoyesyesyesno
B1P014 - Residential: Specify the sqm [m²]
B1P014: Officenonoyesyesnono
B1P014 - Office: Specify the sqm [m²]
B1P014: Industry and Utilitynononononono
B1P014 - Industry and Utility: Specify the sqm [m²]
B1P014: Commercialnonoyesnoyesno
B1P014 - Commercial: Specify the sqm [m²]
B1P014: Institutionalnonoyesnoyesno
B1P014 - Institutional: Specify the sqm [m²]
B1P014: Natural areasnonoyesnonono
B1P014 - Natural areas: Specify the sqm [m²]
B1P014: Recreationalnonoyesnoyesno
B1P014 - Recreational: Specify the sqm [m²]
B1P014: Dismissed areasnononononono
B1P014 - Dismissed areas: Specify the sqm [m²]
B1P014: Othernononononono
B1P014 - Other: Specify the sqm [m²]
B2P001: PED Lab concept definition
B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
B2P002: Installation life time
B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
B2P003: Scale of action
B2P003: ScaleDistrictVirtualDistrict
B2P004: Operator of the installation
B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.IREC
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
B2P006: Circular Economy Approach
B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
B2P006: Other
B2P007: Motivation for developing the PED Lab
B2P007: Motivation for developing the PED Lab
  • Civic
  • Strategic,
  • Private
B2P007: Other
B2P008: Lead partner that manages the PED Lab
B2P008: Lead partner that manages the PED LabMunicipalityResearch center/University
B2P008: Other
B2P009: Collaborative partners that participate in the PED Lab
B2P009: Collaborative partners that participate in the PED Lab
  • Academia,
  • Private,
  • Industrial,
  • Other
B2P009: Otherresearch companies, monitoring company, ict company
B2P010: Synergies between the fields of activities
B2P010: Synergies between the fields of activities
B2P011: Available facilities to test urban configurations in PED Lab
B2P011: Available facilities to test urban configurations in PED Lab
  • Buildings,
  • Demand-side management,
  • Energy storage,
  • Energy networks,
  • Waste management,
  • Lighting,
  • E-mobility,
  • Information and Communication Technologies (ICT),
  • Social interactions,
  • Business models
  • Demand-side management,
  • Energy storage,
  • Energy networks,
  • Efficiency measures,
  • Information and Communication Technologies (ICT)
B2P011: Other
B2P012: Incubation capacities of PED Lab
B2P012: Incubation capacities of PED Lab
  • Tools for prototyping and modelling
  • Monitoring and evaluation infrastructure,
  • Tools for prototyping and modelling,
  • Tools, spaces, events for testing and validation
B2P013: Availability of the facilities for external people
B2P013: Availability of the facilities for external people
B2P014: Monitoring measures
B2P014: Monitoring measures
  • Execution plan,
  • Available data,
  • Type of measured data,
  • Equipment,
  • Level of access
  • Equipment
B2P015: Key Performance indicators
B2P015: Key Performance indicators
  • Energy,
  • Social,
  • Economical / Financial
  • Energy,
  • Environmental
B2P016: Execution of operations
B2P016: Execution of operations
B2P017: Capacities
B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
B2P018: Relations with stakeholders
B2P018: Relations with stakeholders
B2P019: Available tools
B2P019: Available tools
  • Energy modelling,
  • Social models,
  • Business and financial models
  • Energy modelling
B2P019: Available tools
B2P020: External accessibility
B2P020: External accessibility
C1P001: Unlocking Factors
C1P001: Recent technological improvements for on-site RES production3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important
C1P001: Energy Communities, P2P, Prosumers concepts4 - Important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important5 - Very important
C1P001: Storage systems and E-mobility market penetration4 - Important5 - Very important2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important
C1P001: Decreasing costs of innovative materials5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
C1P001: Financial mechanisms to reduce costs and maximize benefits5 - Very important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important4 - Important
C1P001: Social acceptance (top-down)3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important4 - Important
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important4 - Important
C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant
C1P001: Multidisciplinary approaches available for systemic integration2 - Slightly important4 - Important5 - Very important1 - Unimportant4 - Important1 - Unimportant
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important5 - Very important4 - Important1 - Unimportant4 - Important1 - Unimportant
C1P001: Availability of RES on site (Local RES)4 - Important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important
C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P001: Any other UNLOCKING FACTORS (if any)
C1P002: Driving Factors
C1P002: Climate Change adaptation need2 - Slightly important4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important5 - Very important
C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant
C1P002: Urban re-development of existing built environment4 - Important4 - Important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
C1P002: Economic growth need2 - Slightly important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant4 - Important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant
C1P002: Energy autonomy/independence2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant4 - Important4 - Important
C1P002: Any other DRIVING FACTOR4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
C1P003: Administrative barriers
C1P003: Difficulty in the coordination of high number of partners and authorities3 - Moderately important4 - Important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant
C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant
C1P003: Lack of public participation1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: Lack of institutions/mechanisms to disseminate information2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
C1P003:Long and complex procedures for authorization of project activities4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
C1P003: Complicated and non-comprehensive public procurement3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important
C1P003: Fragmented and or complex ownership structure4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: Lack of internal capacities to support energy transition1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: Any other Administrative BARRIER1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: Any other Administrative BARRIER (if any)
C1P004: Policy barriers
C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
C1P004: Lack of Cooperation & support between national-regional-local entities2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P004: Any other Political BARRIER (if any)
C1P005: Legal and Regulatory barriers
C1P005: Inadequate regulations for new technologies4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
C1P005: Regulatory instability3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
C1P005: Non-effective regulations3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Insufficient or insecure financial incentives3 - Moderately important5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Shortage of proven and tested solutions and examples2 - Slightly important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Any other Legal and Regulatory BARRIER (if any)
C1P006: Environmental barriers
C1P006: Environmental barriersUrban area very high buildings (and apartment) density and thus, less available space for renewable sources.
C1P007: Technical barriers
C1P007: Lack of skilled and trained personnel4 - Important5 - Very important2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important
C1P007: Deficient planning2 - Slightly important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Retrofitting work in dwellings in occupied state2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
C1P007: Lack of well-defined process3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
C1P007: Inaccuracy in energy modelling and simulation4 - Important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
C1P007: Lack/cost of computational scalability1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important
C1P007: Grid congestion, grid instability4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Energy retrofitting work in dense and/or historical urban environment3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
C1P008: Social and Cultural barriers
C1P008: Inertia2 - Slightly important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important5 - Very important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
C1P008: Low acceptance of new projects and technologies2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
C1P008: Difficulty of finding and engaging relevant actors2 - Slightly important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Lack of trust beyond social network4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Rebound effect2 - Slightly important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Exclusion of socially disadvantaged groups5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Non-energy issues are more important and urgent for actors4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Any other Social BARRIER (if any)
C1P009: Information and Awareness barriers
C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important5 - Very important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
C1P009: Lack of awareness among authorities2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
C1P009: High costs of design, material, construction, and installation4 - Important5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important
C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
C1P010: Financial barriers
C1P010: Hidden costs2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
C1P010: Insufficient external financial support and funding for project activities3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important
C1P010: Economic crisis1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant
C1P010: Risk and uncertainty3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important
C1P010: Lack of consolidated and tested business models3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important
C1P010: Limited access to capital and cost disincentives2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P010: Any other Financial BARRIER (if any)
C1P011: Market barriers
C1P011: Split incentives5 - Very important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
C1P011: Energy price distortion4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P011: Any other Market BARRIER (if any)
C1P012: Stakeholders involved
C1P012: Government/Public Authorities
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading
  • Planning/leading
C1P012: Research & Innovation
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Monitoring/operation/management
C1P012: Financial/Funding
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Construction/implementation
  • Construction/implementation
C1P012: Analyst, ICT and Big Data
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Planning/leading,
  • Monitoring/operation/management
  • Monitoring/operation/management
  • Monitoring/operation/management
C1P012: Business process management
  • Planning/leading
  • None
  • Planning/leading
C1P012: Urban Services providers
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Planning/leading,
  • Construction/implementation,
  • Monitoring/operation/management
  • Construction/implementation
C1P012: Real Estate developers
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading
  • Planning/leading,
  • Monitoring/operation/management
C1P012: Design/Construction companies
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Design/demand aggregation,
  • Construction/implementation
  • Construction/implementation
C1P012: End‐users/Occupants/Energy Citizens
  • None
  • Design/demand aggregation
  • Planning/leading,
  • Design/demand aggregation
  • Monitoring/operation/management
C1P012: Social/Civil Society/NGOs
  • Planning/leading,
  • Design/demand aggregation
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Planning/leading
  • None
C1P012: Industry/SME/eCommerce
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Construction/implementation
C1P012: Other
  • None
C1P012: Other (if any)
Summary

Authors (framework concept)

Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

Contributors (to the content)

Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

Implemented by

Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)