Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Uncompare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Uncompare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Uncompare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Sinfonia, Bolzano
Riga, Ķīpsala, RTU smart student city
Izmir, District of Karşıyaka
Zukunftsquartier, Vienna
Lund, Brunnshög district
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communitySinfonia, BolzanoRiga, Ķīpsala, RTU smart student cityIzmir, District of KarşıyakaZukunftsquartier, ViennaLund, Brunnshög district
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesyesyesyes
PED relevant case studyyesyesnononono
PED Lab.nononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyes
Annual energy surplusnononoyesyesyes
Energy communityyesnoyesnonoyes
Circularitynononononoyes
Air quality and urban comfortyesyesnoyesnoyes
Electrificationyesnonononoyes
Net-zero energy costnononoyesnono
Net-zero emissionnononononoyes
Self-sufficiency (energy autonomous)nonoyesnonono
Maximise self-sufficiencynonoyesyesnono
Othernoyesnonoyesyes
Other (A1P004)Energy efficient; Sustainable neighbourhood; Social aspects/affordabilityEnergy efficient; Economic feasibility ; High quality of living and comfort; Early and constant user integration for reaching the positive energy goal.Holistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030;
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseCompletedPlanning PhasePlanning PhasePlanning PhaseIn operation
A1P006: Start Date
A1P006: Start date01/1401/2410/2207/182015
A1P007: End Date
A1P007: End date12/2012/2610/252040
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
A1P009: OtherOtherGIS open dataset is under construction
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    A1P011: Geographic coordinates
    X Coordinate (longitude):23.81458811.34344724.0816833927.11004916.33066513.232469400769599
    Y Coordinate (latitude):38.07734946.48231056.9524595638.49605448.21652155.71989792207193
    A1P012: Country
    A1P012: CountryGreeceItalyLatviaTurkeyAustriaSweden
    A1P013: City
    A1P013: CityMunicipality of KifissiaBolzanoRigaİzmirViennaLund
    A1P014: Climate Zone (Köppen Geiger classification)
    A1P014: Climate Zone (Köppen Geiger classification).CsaCfaCfbCsaCfbDfb
    A1P015: District boundary
    A1P015: District boundaryVirtualGeographicGeographicGeographic
    OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
    A1P016: Ownership of the case study/PED Lab
    A1P016: Ownership of the case study/PED Lab:PrivatePublicPrivateMixedPublic
    A1P017: Ownership of the land / physical infrastructure
    A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple Owners
    A1P018: Number of buildings in PED
    A1P018: Number of buildings in PED1521200
    A1P019: Conditioned space
    A1P019: Conditioned space [m²]1700001027951500000
    A1P020: Total ground area
    A1P020: Total ground area [m²]119264326001500000
    A1P021: Floor area ratio: Conditioned space / total ground area
    A1P021: Floor area ratio: Conditioned space / total ground area001301
    A1P022: Financial schemes
    A1P022a: Financing - PRIVATE - Real estatenononononoyes
    A1P022a: Add the value in EUR if available [EUR]99999999
    A1P022b: Financing - PRIVATE - ESCO schemenononononono
    A1P022b: Add the value in EUR if available [EUR]
    A1P022c: Financing - PRIVATE - Othernonononoyesno
    A1P022c: Add the value in EUR if available [EUR]
    A1P022d: Financing - PUBLIC - EU structural fundingnononononoyes
    A1P022d: Add the value in EUR if available [EUR]1000000
    A1P022e: Financing - PUBLIC - National fundingnonononoyesyes
    A1P022e: Add the value in EUR if available [EUR]30000000
    A1P022f: Financing - PUBLIC - Regional fundingnononononoyes
    A1P022f: Add the value in EUR if available [EUR]30000000
    A1P022g: Financing - PUBLIC - Municipal fundingnononononoyes
    A1P022g: Add the value in EUR if available [EUR]180000000
    A1P022h: Financing - PUBLIC - Othernoyesnononono
    A1P022h: Add the value in EUR if available [EUR]
    A1P022i: Financing - RESEARCH FUNDING - EUnonoyesyesnoyes
    A1P022i: Add the value in EUR if available [EUR]750000011933552000000
    A1P022j: Financing - RESEARCH FUNDING - Nationalnononoyesnono
    A1P022j: Add the value in EUR if available [EUR]
    A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononono
    A1P022k: Add the value in EUR if available [EUR]
    A1P022l: Financing - RESEARCH FUNDING - Othernoyesnononono
    A1P022l: Add the value in EUR if available [EUR]
    A1P022: OtherGreen financing
    A1P023: Economic Targets
    A1P023: Economic Targets
    • Boosting local businesses,
    • Boosting local and sustainable production
    • Positive externalities,
    • Boosting local and sustainable production
    • Other
    A1P023: OtherWorld class sustainable living and research environments
    A1P024: More comments:
    A1P024: More comments:
    A1P025: Estimated PED case study / PED LAB costs
    A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
    Contact person for general enquiries
    A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaChristoph GollnerJudith StiekemaOzlem SenyolChristoph GollnerMarkus Paulsson
    A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamFFGOASCKarsiyaka MunicipalityFFGCity of Lund
    A1P028: AffiliationMunicipality / Public BodiesOtherOtherMunicipality / Public BodiesOtherMunicipality / Public Bodies
    A1P028: Othernot for profit private organisation
    A1P029: Emailgiavasoglou@kifissia.grchristoph.gollner@ffg.atjudith@oascities.orgozlemkocaer2@gmail.comchristoph.gollner@ffg.atmarkus.paulsson@lund.se
    Contact person for other special topics
    A1P030: NameStavros Zapantis - vice mayorHasan Burak CavkaEva Dalman
    A1P031: Emailstavros.zapantis@gmail.comhasancavka@iyte.edu.treva.dalman@lund.se
    Pursuant to the General Data Protection RegulationYesYesYesYesYes
    A2P001: Fields of application
    A2P001: Fields of application
    • Energy production
    • Energy efficiency,
    • Energy production,
    • E-mobility,
    • Digital technologies,
    • Indoor air quality,
    • Construction materials
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • Urban comfort (pollution, heat island, noise level etc.)
    • Energy efficiency,
    • Energy flexibility,
    • Energy production
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Water use,
    • Waste management,
    • Construction materials,
    • Other
    A2P001: OtherWalkability and biking
    A2P002: Tools/strategies/methods applied for each of the above-selected fields
    A2P002: Tools/strategies/methods applied for each of the above-selected fieldsA suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.Methods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.LundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions.
    A2P003: Application of ISO52000
    A2P003: Application of ISO52000NoYesNo
    A2P004: Appliances included in the calculation of the energy balance
    A2P004: Appliances included in the calculation of the energy balanceYesYesYes
    A2P005: Mobility included in the calculation of the energy balance
    A2P005: Mobility included in the calculation of the energy balanceYesNoYes
    A2P006: Description of how mobility is included (or not included) in the calculation
    A2P006: Description of how mobility is included (or not included) in the calculationThe university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.Mobility is not included in the calculations.Today electrically charged vehicles are included in the energy balance. In the future also other fuels should be included.
    A2P007: Annual energy demand in buildings / Thermal demand
    A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]80003.86225
    A2P008: Annual energy demand in buildings / Electric Demand
    A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]50001.22630
    A2P009: Annual energy demand for e-mobility
    A2P009: Annual energy demand for e-mobility [GWh/annum]
    A2P010: Annual energy demand for urban infrastructure
    A2P010: Annual energy demand for urban infrastructure [GWh/annum]
    A2P011: Annual renewable electricity production on-site during target year
    A2P011: PVyesnonoyesnoyes
    A2P011: PV - specify production in GWh/annum [GWh/annum]1.028
    A2P011: Windnonoyesnonoyes
    A2P011: Wind - specify production in GWh/annum [GWh/annum]
    A2P011: Hydronononononono
    A2P011: Hydro - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_elnononononono
    A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_peat_elnononononono
    A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
    A2P011: PVT_elnonoyesnonono
    A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
    A2P011: Othernononononono
    A2P011: Other - specify production in GWh/annum [GWh/annum]
    A2P012: Annual renewable thermal production on-site during target year
    A2P012: Geothermalnononononono
    A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Solar Thermalnononononono
    A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_heatnonoyesnonono
    A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: Waste heat+HPnononononoyes
    A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]200
    A2P012: Biomass_peat_heatnononononono
    A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: PVT_thnononononono
    A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_firewood_thnononononono
    A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Othernononononono
    A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
    A2P013: Renewable resources on-site - Additional notes
    A2P013: Renewable resources on-site - Additional notesConventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.
    A2P014: Annual energy use
    A2P014: Annual energy use [GWh/annum]5.088
    A2P015: Annual energy delivered
    A2P015: Annual energy delivered [GWh/annum]
    A2P016: Annual non-renewable electricity production on-site during target year
    A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
    A2P017: Annual non-renewable thermal production on-site during target year
    A2P017: Gasnonoyesyesnono
    A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Coalnononononono
    A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Oilnononononono
    A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Othernononononono
    A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P018: Annual renewable electricity imports from outside the boundary during target year
    A2P018: PVnononoyesnoyes
    A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.707
    A2P018: Windnononononoyes
    A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
    A2P018: Hydronononononoyes
    A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_elnononononoyes
    A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_peat_elnononononono
    A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: PVT_elnononononono
    A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Othernononononono
    A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
    A2P019: Annual renewable thermal imports from outside the boundary during target year
    A2P019: Geothermalnononononono
    A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Solar Thermalnononononono
    A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_heatnononononono
    A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Waste heat+HPnononononono
    A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_peat_heatnononononono
    A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: PVT_thnononononono
    A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_firewood_thnononononono
    A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Othernononononono
    A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
    A2P020: Share of RES on-site / RES outside the boundary
    A2P020: Share of RES on-site / RES outside the boundary0001.454031117397500
    A2P021: GHG-balance calculated for the PED
    A2P021: GHG-balance calculated for the PED [tCO2/annum]
    A2P022: KPIs related to the PED case study / PED Lab
    A2P022: Safety & Security
    A2P022: Health
    A2P022: Education
    A2P022: MobilityMaximum 1/3 transport with car
    A2P022: EnergyLocal energy production 150% of energy need
    A2P022: Water
    A2P022: Economic development
    A2P022: Housing and Community50% rental apartments and 50% owner apartments
    A2P022: Waste
    A2P022: Other
    A2P023: Technological Solutions / Innovations - Energy Generation
    A2P023: Photovoltaicsnoyesnoyesyesyes
    A2P023: Solar thermal collectorsnoyesnononoyes
    A2P023: Wind Turbinesnononononoyes
    A2P023: Geothermal energy systemnonononoyesyes
    A2P023: Waste heat recoverynononononoyes
    A2P023: Waste to energynononononono
    A2P023: Polygenerationnononononoyes
    A2P023: Co-generationnononononono
    A2P023: Heat Pumpnoyesnoyesyesyes
    A2P023: Hydrogennononononoyes
    A2P023: Hydropower plantnononononono
    A2P023: Biomassnononononono
    A2P023: Biogasnononononono
    A2P023: Other
    A2P024: Technological Solutions / Innovations - Energy Flexibility
    A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesnonoyes
    A2P024: Energy management systemnonoyesnonoyes
    A2P024: Demand-side managementnonoyesnonoyes
    A2P024: Smart electricity gridnoyesyesnonoyes
    A2P024: Thermal Storagenonoyesnonoyes
    A2P024: Electric Storagenonoyesnonoyes
    A2P024: District Heating and Coolingnoyesyesnoyesyes
    A2P024: Smart metering and demand-responsive control systemsnonoyesnonoyes
    A2P024: P2P – buildingsnononononono
    A2P024: Other
    A2P025: Technological Solutions / Innovations - Energy Efficiency
    A2P025: Deep Retrofittingnononoyesnono
    A2P025: Energy efficiency measures in historic buildingsnononononono
    A2P025: High-performance new buildingsnononononoyes
    A2P025: Smart Public infrastructure (e.g. smart lighting)noyesnononoyes
    A2P025: Urban data platformsnonoyesnonoyes
    A2P025: Mobile applications for citizensnonoyesnonono
    A2P025: Building services (HVAC & Lighting)nonoyesyesnoyes
    A2P025: Smart irrigationnononononono
    A2P025: Digital tracking for waste disposalnononononoyes
    A2P025: Smart surveillancenononononono
    A2P025: Other
    A2P026: Technological Solutions / Innovations - Mobility
    A2P026: Efficiency of vehicles (public and/or private)nononononono
    A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononononoyes
    A2P026: e-Mobilitynoyesnononoyes
    A2P026: Soft mobility infrastructures and last mile solutionsnononononoyes
    A2P026: Car-free areanononononoyes
    A2P026: Other
    A2P027: Mobility strategies - Additional notes
    A2P027: Mobility strategies - Additional notesWalkability
    A2P028: Energy efficiency certificates
    A2P028: Energy efficiency certificatesNoNoYes
    A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingMiljöbyggnad silver/guld
    A2P029: Any other building / district certificates
    A2P029: Any other building / district certificatesNoNoNo
    A2P029: If yes, please specify and/or enter notes
    A3P001: Relevant city /national strategy
    A3P001: Relevant city /national strategy
    • Energy master planning (SECAP, etc.),
    • Promotion of energy communities (REC/CEC)
    • Energy master planning (SECAP, etc.)
    • Smart cities strategies,
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Energy master planning (SECAP, etc.),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies
    • Climate change adaption plan/strategy (e.g. Climate City contract)
    A3P002: Quantitative targets included in the city / national strategy
    A3P002: Quantitative targets included in the city / national strategyKarşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.City strategy: Net climate neutrality 2030
    A3P003: Strategies towards decarbonization of the gas grid
    A3P003: Strategies towards decarbonization of the gas grid
    • Electrification of Heating System based on Heat Pumps
    A3P003: OtherNo gas grid in Brunnshög
    A3P004: Identification of needs and priorities
    A3P004: Identification of needs and prioritiesAccording to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.Local waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars.
    A3P005: Sustainable behaviour
    A3P005: Sustainable behaviourNeed to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection.
    A3P006: Economic strategies
    A3P006: Economic strategies
    • Open data business models,
    • Innovative business models,
    • Demand management Living Lab
    • PPP models,
    • Other
    A3P006: OtherAttractivenes
    A3P007: Social models
    A3P007: Social models
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Affordability
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Quality of Life,
    • Strategies towards social mix
    A3P007: Other
    A3P008: Integrated urban strategies
    A3P008: Integrated urban strategies
    • SECAP Updates
    • Digital twinning and visual 3D models
    • Digital twinning and visual 3D models,
    • District Energy plans,
    • SECAP Updates
    • Strategic urban planning,
    • Digital twinning and visual 3D models,
    • City Vision 2050,
    • SECAP Updates
    A3P008: Other
    A3P009: Environmental strategies
    A3P009: Environmental strategies
    • Energy Neutral
    • Energy Neutral
    • Energy Neutral,
    • Low Emission Zone,
    • Pollutants Reduction
    • Net zero carbon footprint,
    • Greening strategies,
    • Sustainable Urban drainage systems (SUDS),
    • Nature Based Solutions (NBS)
    A3P009: Other
    A3P010: Legal / Regulatory aspects
    A3P010: Legal / Regulatory aspectsThe municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions.
    B1P001: PED/PED relevant concept definition
    B1P001: PED/PED relevant concept definitionExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.The pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods.
    B1P002: Motivation behind PED/PED relevant project development
    B1P002: Motivation behind PED/PED relevant project developmentExpected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.The aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development.
    B1P003: Environment of the case study area
    B2P003: Environment of the case study areaSuburban areaUrban areaUrban areaUrban areaUrban area
    B1P004: Type of district
    B2P004: Type of district
    • Renovation
    • Renovation
    • New construction,
    • Renovation
    • New construction
    B1P005: Case Study Context
    B1P005: Case Study Context
    • Retrofitting Area
    • Retrofitting Area
    • New Development,
    • Retrofitting Area
    • New Development
    B1P006: Year of construction
    B1P006: Year of construction2005
    B1P007: District population before intervention - Residential
    B1P007: District population before intervention - Residential0
    B1P008: District population after intervention - Residential
    B1P008: District population after intervention - Residential18000
    B1P009: District population before intervention - Non-residential
    B1P009: District population before intervention - Non-residential2000
    B1P010: District population after intervention - Non-residential
    B1P010: District population after intervention - Non-residential22000
    B1P011: Population density before intervention
    B1P011: Population density before intervention000000
    B1P012: Population density after intervention
    B1P012: Population density after intervention000000.026666666666667
    B1P013: Building and Land Use before intervention
    B1P013: Residentialnoyesnoyesyesno
    B1P013 - Residential: Specify the sqm [m²]102795
    B1P013: Officenonononoyesyes
    B1P013 - Office: Specify the sqm [m²]60000
    B1P013: Industry and Utilitynonononoyesno
    B1P013 - Industry and Utility: Specify the sqm [m²]
    B1P013: Commercialnononononono
    B1P013 - Commercial: Specify the sqm [m²]
    B1P013: Institutionalnononononono
    B1P013 - Institutional: Specify the sqm [m²]
    B1P013: Natural areasnononononoyes
    B1P013 - Natural areas: Specify the sqm [m²]2000000
    B1P013: Recreationalnononononono
    B1P013 - Recreational: Specify the sqm [m²]
    B1P013: Dismissed areasnononononono
    B1P013 - Dismissed areas: Specify the sqm [m²]
    B1P013: Othernononononoyes
    B1P013 - Other: Specify the sqm [m²]Outdoor parking: 100000
    B1P014: Building and Land Use after intervention
    B1P014: Residentialnoyesnoyesyesyes
    B1P014 - Residential: Specify the sqm [m²]102795600000
    B1P014: Officenonononoyesyes
    B1P014 - Office: Specify the sqm [m²]650000
    B1P014: Industry and Utilitynonononoyesno
    B1P014 - Industry and Utility: Specify the sqm [m²]
    B1P014: Commercialnononononono
    B1P014 - Commercial: Specify the sqm [m²]
    B1P014: Institutionalnononononoyes
    B1P014 - Institutional: Specify the sqm [m²]50000
    B1P014: Natural areasnononononono
    B1P014 - Natural areas: Specify the sqm [m²]
    B1P014: Recreationalnononononoyes
    B1P014 - Recreational: Specify the sqm [m²]400000
    B1P014: Dismissed areasnononononono
    B1P014 - Dismissed areas: Specify the sqm [m²]
    B1P014: Othernononononono
    B1P014 - Other: Specify the sqm [m²]
    B2P001: PED Lab concept definition
    B2P001: PED Lab concept definition
    B2P002: Installation life time
    B2P002: Installation life time
    B2P003: Scale of action
    B2P003: ScaleDistrictDistrict
    B2P004: Operator of the installation
    B2P004: Operator of the installation
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P006: Circular Economy Approach
    B2P006: Do you apply any strategy to reuse and recycling the materials?
    B2P006: Other
    B2P007: Motivation for developing the PED Lab
    B2P007: Motivation for developing the PED Lab
    B2P007: Other
    B2P008: Lead partner that manages the PED Lab
    B2P008: Lead partner that manages the PED Lab
    B2P008: Other
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Other
    B2P010: Synergies between the fields of activities
    B2P010: Synergies between the fields of activities
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Other
    B2P012: Incubation capacities of PED Lab
    B2P012: Incubation capacities of PED Lab
    B2P013: Availability of the facilities for external people
    B2P013: Availability of the facilities for external people
    B2P014: Monitoring measures
    B2P014: Monitoring measures
    B2P015: Key Performance indicators
    B2P015: Key Performance indicators
    B2P016: Execution of operations
    B2P016: Execution of operations
    B2P017: Capacities
    B2P017: Capacities
    B2P018: Relations with stakeholders
    B2P018: Relations with stakeholders
    B2P019: Available tools
    B2P019: Available tools
    B2P019: Available tools
    B2P020: External accessibility
    B2P020: External accessibility
    C1P001: Unlocking Factors
    C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important
    C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important
    C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
    C1P001: Storage systems and E-mobility market penetration1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P001: Decreasing costs of innovative materials4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant4 - Important
    C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant3 - Moderately important
    C1P001: The ability to predict Multiple Benefits1 - Unimportant5 - Very important4 - Important1 - Unimportant2 - Slightly important
    C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant5 - Very important4 - Important1 - Unimportant3 - Moderately important
    C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant4 - Important
    C1P001: Social acceptance (top-down)5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant3 - Moderately important
    C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important
    C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant3 - Moderately important
    C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important
    C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important
    C1P001: Availability of RES on site (Local RES)1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important
    C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant2 - Slightly important
    C1P001: Any other UNLOCKING FACTORS1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS (if any)
    C1P002: Driving Factors
    C1P002: Climate Change adaptation need4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important
    C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important
    C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
    C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important
    C1P002: Economic growth need2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important
    C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important
    C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important
    C1P002: Energy autonomy/independence5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
    C1P002: Any other DRIVING FACTOR1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P002: Any other DRIVING FACTOR (if any)
    C1P003: Administrative barriers
    C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important
    C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important
    C1P003: Lack of public participation3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant2 - Slightly important
    C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
    C1P003:Long and complex procedures for authorization of project activities5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
    C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
    C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
    C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important
    C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important
    C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER (if any)
    C1P004: Policy barriers
    C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important
    C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important
    C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important
    C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER (if any)
    C1P005: Legal and Regulatory barriers
    C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important
    C1P005: Regulatory instability3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important
    C1P005: Non-effective regulations4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important
    C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant3 - Moderately important
    C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
    C1P005: Insufficient or insecure financial incentives4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important
    C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P005: Shortage of proven and tested solutions and examples1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
    C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER (if any)
    C1P006: Environmental barriers
    C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1?
    C1P007: Technical barriers
    C1P007: Lack of skilled and trained personnel4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important
    C1P007: Deficient planning3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important
    C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
    C1P007: Lack of well-defined process4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important
    C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important
    C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
    C1P007: Grid congestion, grid instability4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important
    C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important
    C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
    C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant2 - Slightly important
    C1P007: Any other Thecnical BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER (if any)
    C1P008: Social and Cultural barriers
    C1P008: Inertia4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
    C1P008: Lack of values and interest in energy optimization measurements5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important
    C1P008: Low acceptance of new projects and technologies5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant2 - Slightly important
    C1P008: Difficulty of finding and engaging relevant actors5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important
    C1P008: Lack of trust beyond social network4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
    C1P008: Rebound effect4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
    C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
    C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
    C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
    C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important
    C1P008: Any other Social BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER (if any)
    C1P009: Information and Awareness barriers
    C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
    C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important
    C1P009: Lack of awareness among authorities1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
    C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant3 - Moderately important4 - Important1 - Unimportant2 - Slightly important
    C1P009: High costs of design, material, construction, and installation1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important
    C1P009: Any other Information and Awareness BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER (if any)
    C1P010: Financial barriers
    C1P010: Hidden costs1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important
    C1P010: Insufficient external financial support and funding for project activities1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important
    C1P010: Economic crisis1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important
    C1P010: Risk and uncertainty1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important
    C1P010: Lack of consolidated and tested business models1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important
    C1P010: Limited access to capital and cost disincentives1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important
    C1P010: Any other Financial BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER (if any)
    C1P011: Market barriers
    C1P011: Split incentives1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
    C1P011: Energy price distortion1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important
    C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important
    C1P011: Any other Market BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P011: Any other Market BARRIER (if any)
    C1P012: Stakeholders involved
    C1P012: Government/Public Authorities
    • Planning/leading
    • Planning/leading,
    • Monitoring/operation/management
    C1P012: Research & Innovation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation
    C1P012: Financial/Funding
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Construction/implementation
    C1P012: Analyst, ICT and Big Data
    • Planning/leading,
    • Monitoring/operation/management
    • Monitoring/operation/management
    C1P012: Business process management
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Urban Services providers
    • Planning/leading,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Real Estate developers
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Design/Construction companies
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: End‐users/Occupants/Energy Citizens
    • Design/demand aggregation
    • Monitoring/operation/management
    C1P012: Social/Civil Society/NGOs
    • Design/demand aggregation
    • None
    C1P012: Industry/SME/eCommerce
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Other
    C1P012: Other (if any)
    Summary

    Authors (framework concept)

    Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

    Contributors (to the content)

    Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

    Implemented by

    Boutik.pt: Filipe Martins, Jamal Khan
    Marek Suchánek (Czech Technical University in Prague)