Filters:
NameProjectTypeCompare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Uncompare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Uncompare
Schönbühel-Aggsbach, Schönbühel an der Donau PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Uncompare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Uncompare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Borlänge, Rymdgatan’s Residential Portfolio
Istanbul, Ozyegin University Campus
Halmstad, Fyllinge
Amsterdam, Buiksloterham PED
Oulu, Kaukovainio
Uden, Loopkantstraat
City of Espoo, Espoonlahti district, Lippulaiva block
Findhorn, the Park
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityBorlänge, Rymdgatan’s Residential PortfolioIstanbul, Ozyegin University CampusHalmstad, FyllingeAmsterdam, Buiksloterham PEDOulu, KaukovainioUden, LoopkantstraatCity of Espoo, Espoonlahti district, Lippulaiva blockFindhorn, the Park
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonononoyesyesnoyesyes
PED relevant case studyyesyesyesyesnonoyesnono
PED Lab.nonononononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesnoyesyesyesnoyes
Annual energy surplusnoyesnonoyesnoyesnoyes
Energy communityyesyesnoyesyesnononoyes
Circularitynonononoyesyesnonoyes
Air quality and urban comfortyesnoyesnononononono
Electrificationyesyesyesnoyesyesyesnoyes
Net-zero energy costnonononononononono
Net-zero emissionnonononoyesnononoyes
Self-sufficiency (energy autonomous)nonononononononono
Maximise self-sufficiencynoyesnononononoyesyes
Othernonoyesnononononono
Other (A1P004)almost nZEB district
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseImplementation PhasePlanning PhaseImplementation PhaseIn operationIn operationIn operationIn operation
A1P006: Start Date
A1P006: Start date10/2401/2111/1906/1706/1801/62
A1P007: End Date
A1P007: End date10/2801/3010/2505/2303/22
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Open data city platform – different dashboards
  • General statistical datasets
  • General statistical datasets
  • Monitoring data available within the districts
  • General statistical datasets
  • Monitoring data available within the districts,
  • Meteorological open data
A1P009: Otherhttps://smartcity-atelier.eu/about/lighthouse-cities/amsterdam/
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
            • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
            • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
            • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
            • https://www.synikia.eu/no/bibliotek/
            • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
            • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf,
            • www.lippulaiva.fi
              A1P011: Geographic coordinates
              X Coordinate (longitude):23.81458815.39449529.25830012.920544.904125.5175950840935075.619124.6543-3.6099
              Y Coordinate (latitude):38.07734960.48660941.03060056.6519452.367664.9928809817313251.660660.149157.6530
              A1P012: Country
              A1P012: CountryGreeceSwedenTurkeySwedenNetherlandsFinlandNetherlandsFinlandUnited Kingdom
              A1P013: City
              A1P013: CityMunicipality of KifissiaBorlängeIstanbulHalmstadAmsterdamOuluUdenEspooFindhorn
              A1P014: Climate Zone (Köppen Geiger classification)
              A1P014: Climate Zone (Köppen Geiger classification).CsaDsbCfaDwbCfbDfcCfbDfbDwc
              A1P015: District boundary
              A1P015: District boundaryVirtualGeographicGeographicGeographicFunctionalGeographicGeographicGeographic
              OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodRegional (close to virtual)
              A1P016: Ownership of the case study/PED Lab
              A1P016: Ownership of the case study/PED Lab:MixedPrivateMixedMixedMixedPrivatePrivateMixed
              A1P017: Ownership of the land / physical infrastructure
              A1P017: Ownership of the land / physical infrastructure:Single OwnerSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerSingle OwnerSingle OwnerMultiple Owners
              A1P018: Number of buildings in PED
              A1P018: Number of buildings in PED101525060619160
              A1P019: Conditioned space
              A1P019: Conditioned space [m²]370028500197002360112000
              A1P020: Total ground area
              A1P020: Total ground area [m²]9945285.400600003860165000180000
              A1P021: Floor area ratio: Conditioned space / total ground area
              A1P021: Floor area ratio: Conditioned space / total ground area000000110
              A1P022: Financial schemes
              A1P022a: Financing - PRIVATE - Real estatenonoyesyesyesyesyesyesyes
              A1P022a: Add the value in EUR if available [EUR]7804440
              A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
              A1P022b: Add the value in EUR if available [EUR]
              A1P022c: Financing - PRIVATE - Othernonononononononono
              A1P022c: Add the value in EUR if available [EUR]
              A1P022d: Financing - PUBLIC - EU structural fundingnonononononononono
              A1P022d: Add the value in EUR if available [EUR]
              A1P022e: Financing - PUBLIC - National fundingnonononononononoyes
              A1P022e: Add the value in EUR if available [EUR]
              A1P022f: Financing - PUBLIC - Regional fundingnonononononononono
              A1P022f: Add the value in EUR if available [EUR]
              A1P022g: Financing - PUBLIC - Municipal fundingnononononoyesnonono
              A1P022g: Add the value in EUR if available [EUR]
              A1P022h: Financing - PUBLIC - Othernonononononononono
              A1P022h: Add the value in EUR if available [EUR]
              A1P022i: Financing - RESEARCH FUNDING - EUnonoyesyesyesyesnoyesyes
              A1P022i: Add the value in EUR if available [EUR]308875
              A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononononono
              A1P022j: Add the value in EUR if available [EUR]
              A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
              A1P022k: Add the value in EUR if available [EUR]
              A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
              A1P022l: Add the value in EUR if available [EUR]
              A1P022: Other
              A1P023: Economic Targets
              A1P023: Economic Targets
              • Positive externalities,
              • Boosting local businesses,
              • Boosting consumption of local and sustainable products
              • Positive externalities,
              • Boosting local and sustainable production,
              • Boosting consumption of local and sustainable products
              • Boosting local and sustainable production
              • Boosting local businesses,
              • Boosting local and sustainable production,
              • Boosting consumption of local and sustainable products
              • Positive externalities,
              • Boosting local and sustainable production
              • Job creation,
              • Positive externalities,
              • Boosting local businesses
              A1P023: OtherDeveloping and demonstrating new solutions
              A1P024: More comments:
              A1P024: More comments:In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVs
              A1P025: Estimated PED case study / PED LAB costs
              A1P025: Estimated PED case study / PED LAB costs [mil. EUR]157804440
              Contact person for general enquiries
              A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaJingchun ShenCem KeskinMarkus OlofsgårdOmar ShafqatSamuli RinneTonje Healey TrulsrudElina EkelundStefano Nebiolo
              A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamHögskolan DalarnaCenter for Energy, Environment and Economy, Ozyegin UniversityAFRYAmsterdam University of Applied SciencesCity of OuluNorwegian University of Science and Technology (NTNU)Citycon OyjFindhorn Innovation Research and Education CIC
              A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityOtherResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversitySME / IndustryResearch Center / University
              A1P028: Other
              A1P029: Emailgiavasoglou@kifissia.grjih@du.secem.keskin@ozyegin.edu.trmarkus.olofsgard@afry.como.shafqat@hva.nlsamuli.rinne@ouka.fitonje.h.trulsrud@ntnu.noElina.ekelund@citycon.comstefanonebiolo@gmail.com
              Contact person for other special topics
              A1P030: NameStavros Zapantis - vice mayorXingxing ZhangM. Pınar MengüçOmar ShafqatSamuli RinneElina Ekelund
              A1P031: Emailstavros.zapantis@gmail.comxza@du.sepinar.menguc@ozyegin.edu.tro.shafqat@hva.nlsamuli.rinne@ouka.fiElina.ekelund@citycon.com
              Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
              A2P001: Fields of application
              A2P001: Fields of application
              • Energy production
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • E-mobility,
              • Construction materials
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • E-mobility,
              • Digital technologies,
              • Waste management,
              • Indoor air quality,
              • Construction materials
              • Energy flexibility,
              • Energy production,
              • E-mobility,
              • Digital technologies
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • E-mobility,
              • Digital technologies,
              • Water use,
              • Waste management,
              • Construction materials
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • E-mobility,
              • Digital technologies,
              • Water use,
              • Indoor air quality
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • Waste management,
              • Indoor air quality,
              • Construction materials
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • E-mobility,
              • Digital technologies
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • E-mobility,
              • Waste management
              A2P001: Other
              A2P002: Tools/strategies/methods applied for each of the above-selected fields
              A2P002: Tools/strategies/methods applied for each of the above-selected fieldsLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMLEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste documentlink based regulation of electricity gridCity vision, Innovation AteliersDifferent kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.Energy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materialsEnergy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider Electric
              A2P003: Application of ISO52000
              A2P003: Application of ISO52000NoYesNoYesNoYesYes
              A2P004: Appliances included in the calculation of the energy balance
              A2P004: Appliances included in the calculation of the energy balanceYesYesNoNoNoNoYes
              A2P005: Mobility included in the calculation of the energy balance
              A2P005: Mobility included in the calculation of the energy balanceNoNoYesNoNoNoNo
              A2P006: Description of how mobility is included (or not included) in the calculation
              A2P006: Description of how mobility is included (or not included) in the calculationNot included, the campus is a non car area except emergenciesNot included. However, there is a charging place for a shared EV in one building.not includedMobility is not included in the energy model.
              A2P007: Annual energy demand in buildings / Thermal demand
              A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.67772.10.1485.5
              A2P008: Annual energy demand in buildings / Electric Demand
              A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.036560.20.1095.81.2
              A2P009: Annual energy demand for e-mobility
              A2P009: Annual energy demand for e-mobility [GWh/annum]0
              A2P010: Annual energy demand for urban infrastructure
              A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
              A2P011: Annual renewable electricity production on-site during target year
              A2P011: PVyesnoyesyesyesyesyesyesyes
              A2P011: PV - specify production in GWh/annum [GWh/annum]0.10.0580.54
              A2P011: Windnonononononononoyes
              A2P011: Wind - specify production in GWh/annum [GWh/annum]
              A2P011: Hydrononononononononono
              A2P011: Hydro - specify production in GWh/annum [GWh/annum]
              A2P011: Biomass_elnonononoyesnononono
              A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
              A2P011: Biomass_peat_elnonononononononono
              A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
              A2P011: PVT_elnoyesnonononononono
              A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
              A2P011: Othernonononononononono
              A2P011: Other - specify production in GWh/annum [GWh/annum]
              A2P012: Annual renewable thermal production on-site during target year
              A2P012: Geothermalnononoyesyesnoyesyesno
              A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]5
              A2P012: Solar Thermalnonononononononoyes
              A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
              A2P012: Biomass_heatnonononoyesnononoyes
              A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
              A2P012: Waste heat+HPnonononoyesyesnonoyes
              A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.2
              A2P012: Biomass_peat_heatnonononononononono
              A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
              A2P012: PVT_thnoyesnonononononono
              A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
              A2P012: Biomass_firewood_thnonononononononoyes
              A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
              A2P012: Othernonononononononono
              A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
              A2P013: Renewable resources on-site - Additional notes
              A2P013: Renewable resources on-site - Additional notesHeat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)*Annual energy use below is presentedin primary energy consumption3x225 kW wind turbines + 100 kW PV
              A2P014: Annual energy use
              A2P014: Annual energy use [GWh/annum]0.3183.52.30.19411.31.2
              A2P015: Annual energy delivered
              A2P015: Annual energy delivered [GWh/annum]0.20550.03685.761.2
              A2P016: Annual non-renewable electricity production on-site during target year
              A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0000
              A2P017: Annual non-renewable thermal production on-site during target year
              A2P017: Gasnonononoyesnononono
              A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]0
              A2P017: Coalnonononoyesnononono
              A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]0
              A2P017: Oilnonononoyesnononono
              A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]0
              A2P017: Othernoyesnonononononono
              A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
              A2P018: Annual renewable electricity imports from outside the boundary during target year
              A2P018: PVnonoyesnoyesyesnonono
              A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.00045547
              A2P018: Windnonononoyesyesnonono
              A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
              A2P018: Hydrononononoyesyesnonono
              A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
              A2P018: Biomass_elnonononoyesyesnonono
              A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
              A2P018: Biomass_peat_elnonononoyesyesnonono
              A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
              A2P018: PVT_elnonononoyesnononono
              A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
              A2P018: Othernoyesnononononoyesno
              A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.1875.26
              A2P019: Annual renewable thermal imports from outside the boundary during target year
              A2P019: Geothermalnonononoyesnononono
              A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Solar Thermalnonononoyesnononono
              A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Biomass_heatnonononoyesyesnonono
              A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
              A2P019: Waste heat+HPnonononoyesnononono
              A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Biomass_peat_heatnonononoyesnononono
              A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
              A2P019: PVT_thnonononoyesnononono
              A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Biomass_firewood_thnonononoyesnononono
              A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Othernoyesnonononononono
              A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
              A2P020: Share of RES on-site / RES outside the boundary
              A2P020: Share of RES on-site / RES outside the boundary00.538395721925130003.285714285714301.05323193916350
              A2P021: GHG-balance calculated for the PED
              A2P021: GHG-balance calculated for the PED [tCO2/annum]6.932500-0.000430
              A2P022: KPIs related to the PED case study / PED Lab
              A2P022: Safety & SecuritynonePersonal Safety
              A2P022: Healththermal comfort diagramEncouraging a healthy lifestyleHealthy community
              A2P022: Educationnone
              A2P022: MobilitynoneModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV chargingSustainable mobility
              A2P022: Energynormalized CO2/GHG & Energy intensityFinal energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reductionNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emissionOn-site energy ratio
              A2P022: Water
              A2P022: Economic developmentcost of excess emissionsTotal investments, Payback time, Economic value of savingscapital costs, operational cots, overall economic performance (5 KPIs)
              A2P022: Housing and CommunityDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy povertydemographic composition, diverse community, social cohesion
              A2P022: WasteRecycling rate
              A2P022: OtherSmart Cities strategies, Quality of open dataSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)
              A2P023: Technological Solutions / Innovations - Energy Generation
              A2P023: Photovoltaicsnoyesyesyesyesyesyesyesyes
              A2P023: Solar thermal collectorsnoyesnonononononoyes
              A2P023: Wind Turbinesnonoyesnononononoyes
              A2P023: Geothermal energy systemnoyesnonoyesnoyesyesno
              A2P023: Waste heat recoverynoyesnonoyesyesnoyesyes
              A2P023: Waste to energynonononoyesnononono
              A2P023: Polygenerationnonononononononono
              A2P023: Co-generationnonoyesnonoyesnonono
              A2P023: Heat Pumpnoyesyesnoyesyesyesnoyes
              A2P023: Hydrogennonononononononono
              A2P023: Hydropower plantnonononononononono
              A2P023: Biomassnonononoyesyesnonoyes
              A2P023: Biogasnonononoyesnononono
              A2P023: Other
              A2P024: Technological Solutions / Innovations - Energy Flexibility
              A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesyesyesyesnoyesno
              A2P024: Energy management systemnonoyesnoyesyesyesyesyes
              A2P024: Demand-side managementnonoyesyesyesnoyesnono
              A2P024: Smart electricity gridnononoyesyesnonoyesno
              A2P024: Thermal Storagenoyesnonoyesyesnoyesyes
              A2P024: Electric Storagenonoyesnoyesnonoyesyes
              A2P024: District Heating and Coolingnoyesyesnoyesyesnonoyes
              A2P024: Smart metering and demand-responsive control systemsnonoyesyesyesnoyesnono
              A2P024: P2P – buildingsnonononoyesnononono
              A2P024: Other
              A2P025: Technological Solutions / Innovations - Energy Efficiency
              A2P025: Deep Retrofittingnoyesnonoyesyesnonono
              A2P025: Energy efficiency measures in historic buildingsnonononoyesnononono
              A2P025: High-performance new buildingsnonoyesnoyesyesyesyesyes
              A2P025: Smart Public infrastructure (e.g. smart lighting)nonononoyesnonoyesno
              A2P025: Urban data platformsnonononoyesyesnonono
              A2P025: Mobile applications for citizensnonononoyesnononono
              A2P025: Building services (HVAC & Lighting)noyesyesnoyesyesyesyesno
              A2P025: Smart irrigationnonoyesnoyesnononono
              A2P025: Digital tracking for waste disposalnonononoyesnononono
              A2P025: Smart surveillancenonoyesnononononono
              A2P025: Other
              A2P026: Technological Solutions / Innovations - Mobility
              A2P026: Efficiency of vehicles (public and/or private)nonononoyesyesnonono
              A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonononoyesyesnoyesno
              A2P026: e-Mobilitynonoyesnoyesyesnoyesyes
              A2P026: Soft mobility infrastructures and last mile solutionsnonoyesnoyesyesnonono
              A2P026: Car-free areanonoyesnoyesnononono
              A2P026: OtherLocal transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries
              A2P027: Mobility strategies - Additional notes
              A2P027: Mobility strategies - Additional notes
              A2P028: Energy efficiency certificates
              A2P028: Energy efficiency certificatesNoYesNoYesYesYes
              A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingThe obligatory buildijng energy classificationEPC = 0, energy neutral buildingEnergy Performance Certificate => Energy efficiency class B (2018 version)
              A2P029: Any other building / district certificates
              A2P029: Any other building / district certificatesNoYesNoNoNoYes
              A2P029: If yes, please specify and/or enter notesLEED BD+C, LEED NC CAMPUSLEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD)
              A3P001: Relevant city /national strategy
              A3P001: Relevant city /national strategy
              • Energy master planning (SECAP, etc.),
              • Promotion of energy communities (REC/CEC)
              • Promotion of energy communities (REC/CEC),
              • Climate change adaption plan/strategy (e.g. Climate City contract)
              • Smart cities strategies,
              • Energy master planning (SECAP, etc.),
              • Climate change adaption plan/strategy (e.g. Climate City contract),
              • National / international city networks addressing sustainable urban development and climate neutrality
              • Promotion of energy communities (REC/CEC)
              • Smart cities strategies,
              • Energy master planning (SECAP, etc.),
              • New development strategies,
              • Promotion of energy communities (REC/CEC),
              • Climate change adaption plan/strategy (e.g. Climate City contract),
              • National / international city networks addressing sustainable urban development and climate neutrality
              • Smart cities strategies,
              • Urban Renewal Strategies,
              • Energy master planning (SECAP, etc.),
              • New development strategies,
              • Climate change adaption plan/strategy (e.g. Climate City contract),
              • National / international city networks addressing sustainable urban development and climate neutrality
              • Energy master planning (SECAP, etc.),
              • New development strategies,
              • Climate change adaption plan/strategy (e.g. Climate City contract),
              • National / international city networks addressing sustainable urban development and climate neutrality
              A3P002: Quantitative targets included in the city / national strategy
              A3P002: Quantitative targets included in the city / national strategyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.Carbon neutrality by 2035Relevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels.
              A3P003: Strategies towards decarbonization of the gas grid
              A3P003: Strategies towards decarbonization of the gas grid
              • Electrification of Heating System based on Heat Pumps,
              • Electrification of Cooking Methods
              • Electrification of Heating System based on Heat Pumps,
              • Electrification of Cooking Methods,
              • Biogas,
              • Hydrogen
              • Electrification of Heating System based on Heat Pumps
              A3P003: OtherBoiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible Pricing
              A3P004: Identification of needs and priorities
              A3P004: Identification of needs and prioritiesIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.Carbon and Energy NeutralityDeveloping and demonstrating solutions for carbon neutrality- Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district.
              A3P005: Sustainable behaviour
              A3P005: Sustainable behaviourWhile our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.Under LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.E. g. visualizing energy and water consumptionFor Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners.
              A3P006: Economic strategies
              A3P006: Economic strategies
              • Open data business models,
              • Life Cycle Cost,
              • Circular economy models,
              • Local trading
              • Local trading
              • Innovative business models,
              • Life Cycle Cost,
              • Circular economy models,
              • Demand management Living Lab,
              • Local trading,
              • Existing incentives
              • Open data business models,
              • Innovative business models,
              • PPP models,
              • Life Cycle Cost,
              • Circular economy models
              • Innovative business models
              A3P006: Other
              A3P007: Social models
              A3P007: Social models
              • Strategies towards (local) community-building,
              • Behavioural Change / End-users engagement,
              • Social incentives,
              • Affordability,
              • Digital Inclusion
              • Behavioural Change / End-users engagement,
              • Citizen/owner involvement in planning and maintenance
              • Strategies towards (local) community-building,
              • Co-creation / Citizen engagement strategies,
              • Behavioural Change / End-users engagement,
              • Citizen Social Research,
              • Social incentives,
              • Quality of Life,
              • Digital Inclusion,
              • Citizen/owner involvement in planning and maintenance,
              • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
              • Co-creation / Citizen engagement strategies,
              • Behavioural Change / End-users engagement,
              • Citizen Social Research,
              • Policy Forums,
              • Quality of Life,
              • Strategies towards social mix,
              • Affordability,
              • Prevention of energy poverty,
              • Citizen/owner involvement in planning and maintenance,
              • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
              • Co-creation / Citizen engagement strategies,
              • Social incentives,
              • Quality of Life
              • Co-creation / Citizen engagement strategies
              • Strategies towards (local) community-building,
              • Co-creation / Citizen engagement strategies,
              • Quality of Life
              A3P007: Other
              A3P008: Integrated urban strategies
              A3P008: Integrated urban strategies
              • Strategic urban planning,
              • Digital twinning and visual 3D models,
              • District Energy plans,
              • Building / district Certification
              • City Vision 2050,
              • SECAP Updates,
              • Building / district Certification
              • Strategic urban planning
              • Strategic urban planning,
              • Digital twinning and visual 3D models,
              • District Energy plans,
              • City Vision 2050,
              • SECAP Updates,
              • Building / district Certification
              • Strategic urban planning,
              • District Energy plans,
              • City Vision 2050,
              • SECAP Updates
              • Building / district Certification
              A3P008: Other
              A3P009: Environmental strategies
              A3P009: Environmental strategies
              • Low Emission Zone,
              • Net zero carbon footprint,
              • Life Cycle approach,
              • Sustainable Urban drainage systems (SUDS)
              • Energy Neutral,
              • Low Emission Zone,
              • Net zero carbon footprint,
              • Greening strategies,
              • Cool Materials
              • Energy Neutral,
              • Carbon-free
              • Energy Neutral,
              • Life Cycle approach
              • Energy Neutral,
              • Net zero carbon footprint
              • Other
              • Energy Neutral,
              • Net zero carbon footprint
              A3P009: OtherCarbon free in terms of energy
              A3P010: Legal / Regulatory aspects
              A3P010: Legal / Regulatory aspectsISO 45001, ISO 14001, ISO 50001, Zero Waste PolicyRegulatory sandbox- Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021
              B1P001: PED/PED relevant concept definition
              B1P001: PED/PED relevant concept definitionThe Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.The campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.Functional PEDThe original idea is that the area produces at least as much it consumes.The demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.Lippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production.
              B1P002: Motivation behind PED/PED relevant project development
              B1P002: Motivation behind PED/PED relevant project developmentBorlänge city has committed to become the carbon-neutral city by 2030.The purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.Brown field development of a former industrial neighbourhood into a low-carbon, smart Positive Energy District with mixed uses.Developing systems towards carbon neutrality. Also urban renewal.The need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.- Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholders
              B1P003: Environment of the case study area
              B2P003: Environment of the case study areaUrban areaSuburban areaSuburban areaUrban areaSuburban areaSuburban areaUrban areaRural
              B1P004: Type of district
              B2P004: Type of district
              • Renovation
              • Renovation
              • New construction
              • New construction
              • New construction,
              • Renovation
              • New construction
              • New construction
              • New construction
              B1P005: Case Study Context
              B1P005: Case Study Context
              • Re-use / Transformation Area,
              • Retrofitting Area
              • Retrofitting Area
              • New Development
              • New Development
              • New Development,
              • Retrofitting Area
              • New Development
              • Re-use / Transformation Area,
              • New Development
              • New Development
              B1P006: Year of construction
              B1P006: Year of construction199020242022
              B1P007: District population before intervention - Residential
              B1P007: District population before intervention - Residential1003500
              B1P008: District population after intervention - Residential
              B1P008: District population after intervention - Residential1003500
              B1P009: District population before intervention - Non-residential
              B1P009: District population before intervention - Non-residential69800
              B1P010: District population after intervention - Non-residential
              B1P010: District population after intervention - Non-residential69800
              B1P011: Population density before intervention
              B1P011: Population density before intervention0034000000
              B1P012: Population density after intervention
              B1P012: Population density after intervention00.01065862242332834.337771548704000.058333333333333000
              B1P013: Building and Land Use before intervention
              B1P013: Residentialnoyesnononoyesnonono
              B1P013 - Residential: Specify the sqm [m²]4360
              B1P013: Officenonononononononono
              B1P013 - Office: Specify the sqm [m²]
              B1P013: Industry and Utilitynonononoyesnononono
              B1P013 - Industry and Utility: Specify the sqm [m²]
              B1P013: Commercialnononononoyesnoyesno
              B1P013 - Commercial: Specify the sqm [m²]
              B1P013: Institutionalnonoyesnononononono
              B1P013 - Institutional: Specify the sqm [m²]285.400
              B1P013: Natural areasnononoyesnoyesnoyesyes
              B1P013 - Natural areas: Specify the sqm [m²]
              B1P013: Recreationalnononononoyesnonono
              B1P013 - Recreational: Specify the sqm [m²]
              B1P013: Dismissed areasnonononononononono
              B1P013 - Dismissed areas: Specify the sqm [m²]
              B1P013: Othernoyesnonononononono
              B1P013 - Other: Specify the sqm [m²]706
              B1P014: Building and Land Use after intervention
              B1P014: Residentialnoyesnonoyesyesyesyesyes
              B1P014 - Residential: Specify the sqm [m²]43602394
              B1P014: Officenonononoyesnononoyes
              B1P014 - Office: Specify the sqm [m²]
              B1P014: Industry and Utilitynonononononononono
              B1P014 - Industry and Utility: Specify the sqm [m²]
              B1P014: Commercialnonononoyesyesnoyesno
              B1P014 - Commercial: Specify the sqm [m²]
              B1P014: Institutionalnonoyesnononononono
              B1P014 - Institutional: Specify the sqm [m²]280000
              B1P014: Natural areasnononononoyesnonoyes
              B1P014 - Natural areas: Specify the sqm [m²]
              B1P014: Recreationalnonononoyesyesnonono
              B1P014 - Recreational: Specify the sqm [m²]
              B1P014: Dismissed areasnonononononononono
              B1P014 - Dismissed areas: Specify the sqm [m²]
              B1P014: Othernoyesnonononononono
              B1P014 - Other: Specify the sqm [m²]706
              B2P001: PED Lab concept definition
              B2P001: PED Lab concept definition
              B2P002: Installation life time
              B2P002: Installation life time
              B2P003: Scale of action
              B2P003: Scale
              B2P004: Operator of the installation
              B2P004: Operator of the installation
              B2P005: Replication framework: Applied strategy to reuse and recycling the materials
              B2P005: Replication framework: Applied strategy to reuse and recycling the materials
              B2P006: Circular Economy Approach
              B2P006: Do you apply any strategy to reuse and recycling the materials?
              B2P006: Other
              B2P007: Motivation for developing the PED Lab
              B2P007: Motivation for developing the PED Lab
              B2P007: Other
              B2P008: Lead partner that manages the PED Lab
              B2P008: Lead partner that manages the PED Lab
              B2P008: Other
              B2P009: Collaborative partners that participate in the PED Lab
              B2P009: Collaborative partners that participate in the PED Lab
              B2P009: Other
              B2P010: Synergies between the fields of activities
              B2P010: Synergies between the fields of activities
              B2P011: Available facilities to test urban configurations in PED Lab
              B2P011: Available facilities to test urban configurations in PED Lab
              B2P011: Other
              B2P012: Incubation capacities of PED Lab
              B2P012: Incubation capacities of PED Lab
              B2P013: Availability of the facilities for external people
              B2P013: Availability of the facilities for external people
              B2P014: Monitoring measures
              B2P014: Monitoring measures
              B2P015: Key Performance indicators
              B2P015: Key Performance indicators
              B2P016: Execution of operations
              B2P016: Execution of operations
              B2P017: Capacities
              B2P017: Capacities
              B2P018: Relations with stakeholders
              B2P018: Relations with stakeholders
              B2P019: Available tools
              B2P019: Available tools
              B2P019: Available tools
              B2P020: External accessibility
              B2P020: External accessibility
              C1P001: Unlocking Factors
              C1P001: Recent technological improvements for on-site RES production5 - Very important4 - Important5 - Very important3 - Moderately important4 - Important5 - Very important3 - Moderately important4 - Important1 - Unimportant
              C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
              C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important3 - Moderately important4 - Important5 - Very important3 - Moderately important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant
              C1P001: Storage systems and E-mobility market penetration3 - Moderately important4 - Important5 - Very important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant
              C1P001: Decreasing costs of innovative materials4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
              C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant
              C1P001: The ability to predict Multiple Benefits4 - Important4 - Important2 - Slightly important3 - Moderately important4 - Important3 - Moderately important4 - Important1 - Unimportant
              C1P001: The ability to predict the distribution of benefits and impacts4 - Important4 - Important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important1 - Unimportant
              C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important5 - Very important4 - Important2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant
              C1P001: Social acceptance (top-down)5 - Very important5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important5 - Very important2 - Slightly important1 - Unimportant
              C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important5 - Very important4 - Important2 - Slightly important2 - Slightly important4 - Important2 - Slightly important1 - Unimportant
              C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important4 - Important5 - Very important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
              C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important5 - Very important4 - Important4 - Important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant
              C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
              C1P001: Availability of RES on site (Local RES)5 - Very important5 - Very important5 - Very important3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant
              C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important2 - Slightly important4 - Important3 - Moderately important2 - Slightly important4 - Important4 - Important1 - Unimportant1 - Unimportant
              C1P001: Any other UNLOCKING FACTORS1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
              C1P001: Any other UNLOCKING FACTORS (if any)
              C1P002: Driving Factors
              C1P002: Climate Change adaptation need4 - Important5 - Very important5 - Very important3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
              C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important5 - Very important3 - Moderately important5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant
              C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
              C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant
              C1P002: Economic growth need2 - Slightly important4 - Important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
              C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
              C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant4 - Important1 - Unimportant4 - Important5 - Very important2 - Slightly important2 - Slightly important1 - Unimportant
              C1P002: Energy autonomy/independence5 - Very important2 - Slightly important5 - Very important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
              C1P002: Any other DRIVING FACTOR1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P002: Any other DRIVING FACTOR (if any)
              C1P003: Administrative barriers
              C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important5 - Very important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
              C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
              C1P003: Lack of public participation3 - Moderately important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important4 - Important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
              C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
              C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
              C1P003: Complicated and non-comprehensive public procurement4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
              C1P003: Fragmented and or complex ownership structure3 - Moderately important4 - Important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
              C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important5 - Very important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
              C1P003: Lack of internal capacities to support energy transition3 - Moderately important5 - Very important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant
              C1P003: Any other Administrative BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
              C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
              C1P004: Policy barriers
              C1P004: Lack of long-term and consistent energy plans and policies4 - Important5 - Very important5 - Very important4 - Important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
              C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important5 - Very important5 - Very important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
              C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
              C1P004: Any other Political BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P004: Any other Political BARRIER (if any)
              C1P005: Legal and Regulatory barriers
              C1P005: Inadequate regulations for new technologies4 - Important4 - Important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant
              C1P005: Regulatory instability3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
              C1P005: Non-effective regulations4 - Important2 - Slightly important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
              C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
              C1P005: Building code and land-use planning hindering innovative technologies4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant
              C1P005: Insufficient or insecure financial incentives4 - Important3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant
              C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
              C1P005: Shortage of proven and tested solutions and examples4 - Important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
              C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P005: Any other Legal and Regulatory BARRIER (if any)
              C1P006: Environmental barriers
              C1P006: Environmental barriers2 - Slightly importantAir Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)
              C1P007: Technical barriers
              C1P007: Lack of skilled and trained personnel4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
              C1P007: Deficient planning3 - Moderately important4 - Important5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P007: Retrofitting work in dwellings in occupied state4 - Important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
              C1P007: Lack of well-defined process4 - Important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P007: Inaccuracy in energy modelling and simulation4 - Important2 - Slightly important5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant
              C1P007: Lack/cost of computational scalability4 - Important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P007: Grid congestion, grid instability4 - Important5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P007: Negative effects of project intervention on the natural environment3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
              C1P007: Any other Thecnical BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P007: Any other Thecnical BARRIER (if any)
              C1P008: Social and Cultural barriers
              C1P008: Inertia4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
              C1P008: Lack of values and interest in energy optimization measurements5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P008: Low acceptance of new projects and technologies5 - Very important5 - Very important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
              C1P008: Difficulty of finding and engaging relevant actors5 - Very important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P008: Lack of trust beyond social network4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P008: Rebound effect4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
              C1P008: Hostile or passive attitude towards environmentalism5 - Very important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant
              C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
              C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
              C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant
              C1P008: Any other Social BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P008: Any other Social BARRIER (if any)
              C1P009: Information and Awareness barriers
              C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important5 - Very important5 - Very important4 - Important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
              C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
              C1P009: Lack of awareness among authorities5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P009: Information asymmetry causing power asymmetry of established actors5 - Very important4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
              C1P009: High costs of design, material, construction, and installation5 - Very important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
              C1P009: Any other Information and Awareness BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P009: Any other Information and Awareness BARRIER (if any)
              C1P010: Financial barriers
              C1P010: Hidden costs5 - Very important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
              C1P010: Insufficient external financial support and funding for project activities5 - Very important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
              C1P010: Economic crisis5 - Very important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
              C1P010: Risk and uncertainty5 - Very important5 - Very important2 - Slightly important4 - Important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
              C1P010: Lack of consolidated and tested business models5 - Very important4 - Important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
              C1P010: Limited access to capital and cost disincentives5 - Very important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
              C1P010: Any other Financial BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P010: Any other Financial BARRIER (if any)
              C1P011: Market barriers
              C1P011: Split incentives4 - Important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
              C1P011: Energy price distortion4 - Important5 - Very important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
              C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
              C1P011: Any other Market BARRIER1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P011: Any other Market BARRIER (if any)
              C1P012: Stakeholders involved
              C1P012: Government/Public Authorities
              • Monitoring/operation/management
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • Design/demand aggregation
              • Monitoring/operation/management
              • Planning/leading,
              • Design/demand aggregation,
              • Monitoring/operation/management
              • Planning/leading,
              • Design/demand aggregation
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation
              C1P012: Research & Innovation
              • Planning/leading
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • Monitoring/operation/management
              • Planning/leading,
              • Design/demand aggregation,
              • Monitoring/operation/management
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • Planning/leading,
              • Design/demand aggregation
              C1P012: Financial/Funding
              • None
              • Planning/leading,
              • Construction/implementation,
              • Monitoring/operation/management
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation
              C1P012: Analyst, ICT and Big Data
              • None
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • Monitoring/operation/management
              • Construction/implementation
              • Monitoring/operation/management
              • Planning/leading,
              • Design/demand aggregation,
              • Monitoring/operation/management
              C1P012: Business process management
              • None
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • Design/demand aggregation
              • Planning/leading,
              • Monitoring/operation/management
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation
              C1P012: Urban Services providers
              • None
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • Design/demand aggregation
              • Planning/leading
              • None
              C1P012: Real Estate developers
              • Design/demand aggregation
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • Construction/implementation
              • Design/demand aggregation,
              • Construction/implementation
              • Planning/leading,
              • Construction/implementation,
              • Monitoring/operation/management
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              C1P012: Design/Construction companies
              • None
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • Design/demand aggregation
              • Design/demand aggregation
              • Planning/leading,
              • Design/demand aggregation
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation
              C1P012: End‐users/Occupants/Energy Citizens
              • Monitoring/operation/management
              • Monitoring/operation/management
              • Monitoring/operation/management
              • Design/demand aggregation
              • Monitoring/operation/management
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              C1P012: Social/Civil Society/NGOs
              • Monitoring/operation/management
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • Design/demand aggregation
              • Monitoring/operation/management
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation
              C1P012: Industry/SME/eCommerce
              • None
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • Construction/implementation
              • Construction/implementation
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              C1P012: Other
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              C1P012: Other (if any)
              Summary

              Authors (framework concept)

              Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

              Contributors (to the content)

              Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

              Implemented by

              Boutik.pt: Filipe Martins, Jamal Khan
              Marek Suchánek (Czech Technical University in Prague)