Filters:
NameProjectTypeCompare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Uncompare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Uncompare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Uncompare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Uncompare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Uncompare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Uncompare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Barcelona, SEILAB & Energy SmartLab
Tartu, Annelinn
Munich, Harthof district
Amsterdam, Buiksloterham PED
Évora, Portugal
Lund, Brunnshög district
Espoo, Kera
City of Espoo, Espoonlahti district, Lippulaiva block
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityBarcelona, SEILAB & Energy SmartLabTartu, AnnelinnMunich, Harthof districtAmsterdam, Buiksloterham PEDÉvora, PortugalLund, Brunnshög districtEspoo, KeraCity of Espoo, Espoonlahti district, Lippulaiva block
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononoyesyesnoyesyesyes
PED relevant case studyyesnoyesnonoyesnoyesno
PED Lab.noyesnononoyesnonono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynonoyesyesyesnoyesyesno
Annual energy surplusnononoyesyesyesyesnono
Energy communityyesyesyesyesyesyesyesnono
Circularitynonononoyesnoyesyesno
Air quality and urban comfortyesnononononoyesnono
Electrificationyesyesyesnoyesnoyesnono
Net-zero energy costnonononononononono
Net-zero emissionnoyesnonoyesnoyesnono
Self-sufficiency (energy autonomous)noyesnonononononono
Maximise self-sufficiencynonononononononoyes
Othernoyesnonononoyesnono
Other (A1P004)Green ITHolistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030;
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseIn operationPlanning PhaseImplementation PhaseImplementation PhaseImplementation PhaseIn operationPlanning PhaseIn operation
A1P006: Start Date
A1P006: Start date01/201112/2301/2311/1910/19201501/1506/18
A1P007: End Date
A1P007: End date02/201311/2612/2710/2509/24204012/3503/22
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
  • Open data city platform – different dashboards
  • General statistical datasets
A1P009: Otherhttps://smartcity-atelier.eu/about/lighthouse-cities/amsterdam/GIS open dataset is under construction
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
        • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
        • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf,
        • www.lippulaiva.fi
        A1P011: Geographic coordinates
        X Coordinate (longitude):23.8145882.126.748111.5696250599476044.9041-7.90937713.23246940076959924.7537777824.6543
        Y Coordinate (latitude):38.07734941.358.370848.2043626127515252.367638.57080455.7198979220719360.2162222260.1491
        A1P012: Country
        A1P012: CountryGreeceSpainEstoniaGermanyNetherlandsPortugalSwedenFinlandFinland
        A1P013: City
        A1P013: CityMunicipality of KifissiaBarcelona and TarragonaTartuMunichAmsterdamÉvoraLundEspooEspoo
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CsaCsaDfbCfbCfbCsaDfbDfbDfb
        A1P015: District boundary
        A1P015: District boundaryVirtualVirtualGeographicGeographicFunctionalGeographicGeographicGeographicGeographic
        OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:PublicPublicMixedMixedMixedPublicMixedPrivate
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersSingle Owner
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED0126602009
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]206285001500000112000
        A1P020: Total ground area
        A1P020: Total ground area [m²]54000005601500000580000165000
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area000000101
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenonononoyesnoyesnoyes
        A1P022a: Add the value in EUR if available [EUR]99999999
        A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernonononononononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnonononononoyesnono
        A1P022d: Add the value in EUR if available [EUR]1000000
        A1P022e: Financing - PUBLIC - National fundingnonoyesnononoyesnono
        A1P022e: Add the value in EUR if available [EUR]30000000
        A1P022f: Financing - PUBLIC - Regional fundingnonononononoyesnono
        A1P022f: Add the value in EUR if available [EUR]30000000
        A1P022g: Financing - PUBLIC - Municipal fundingnononoyesnonoyesnono
        A1P022g: Add the value in EUR if available [EUR]180000000
        A1P022h: Financing - PUBLIC - Othernonononononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnononoyesyesyesyesnoyes
        A1P022i: Add the value in EUR if available [EUR]199982752000000308875
        A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononononono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: OtherMultiple different funding schemes depending on the case.
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Job creation,
        • Boosting local and sustainable production
        • Boosting local businesses,
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products
        • Other
        • Job creation,
        • Positive externalities,
        • Boosting local businesses,
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products
        • Job creation,
        • Positive externalities,
        • Boosting local businesses
        A1P023: OtherWorld class sustainable living and research environmentsCircular economy
        A1P024: More comments:
        A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVs
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
        Contact person for general enquiries
        A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaDr. Jaume Salom, Dra. Cristina CorcheroDr. Gonçalo Homem De Almeida Rodriguez CorreiaStefan SynekOmar ShafqatJoão Bravo DiasMarkus PaulssonJoni MäkinenElina Ekelund
        A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamIRECDelft University of TechnologyCity of MunichAmsterdam University of Applied SciencesEDP LabelecCity of LundCity of EspooCitycon Oyj
        A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversitySME / IndustryMunicipality / Public BodiesMunicipality / Public BodiesSME / Industry
        A1P028: OtherAndreas Bärnreuther
        A1P029: Emailgiavasoglou@kifissia.grJsalom@irec.catg.correia@tudelft.nlstefan.synek@muenchen.deo.shafqat@hva.nljoao.bravodias@edp.ptmarkus.paulsson@lund.sejoni.makinen@espoo.fiElina.ekelund@citycon.com
        Contact person for other special topics
        A1P030: NameStavros Zapantis - vice mayorQiaochu FanStefan SynekOmar ShafqatEva DalmanElina Ekelund
        A1P031: Emailstavros.zapantis@gmail.comq.fan-1@tudelft.nlstefan.synek@muenchen.deo.shafqat@hva.nleva.dalman@lund.seElina.ekelund@citycon.com
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Water use,
        • Waste management,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Waste management,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Water use,
        • Waste management,
        • Construction materials,
        • Other
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Waste management,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        A2P001: OtherWalkability and biking
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)City vision, Innovation AteliersLundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions.- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)Energy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider Electric
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000YesNoNoNoYes
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceYesYesNoYesYesNoYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceYesNoNoYesYesNoNo
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculation– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhToday electrically charged vehicles are included in the energy balance. In the future also other fuels should be included.Mobility is not included in the energy model.
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2554.55.5
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]3019.45.8
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesyesnoyesyesnoyesyesyes
        A2P011: PV - specify production in GWh/annum [GWh/annum]40.54
        A2P011: Windnonononononoyesnono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydrononononononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnonononoyesnononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnonononononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnonononononononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernonononononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnonononoyesnononoyes
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]5
        A2P012: Solar Thermalnononoyesnonononono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatnonononoyesnononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPnonononoyesnoyesyesno
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]200
        A2P012: Biomass_peat_heatnonononononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnonononononononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnonononononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernonononononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notesLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]78.811.3
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]15.45.76
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]000
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnoyesnoyesyesnononono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]0
        A2P017: Coalnonononoyesnononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]0
        A2P017: Oilnononoyesyesnononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]0
        A2P017: Othernonononononononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnononoyesyesnoyesnono
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
        A2P018: Windnononoyesyesnoyesnono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydrononononoyesnoyesnono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnononoyesyesnoyesnono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnononoyesyesnononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnononoyesyesnononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernonononononononoyes
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]5.26
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnononoyesyesnononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnonononoyesnononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnononoyesyesnononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnononoyesyesnononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnonononoyesnononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnonononoyesnononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnonononoyesnononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernonononononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary000000001.0532319391635
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]2504500000
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Security
        A2P022: Health
        A2P022: Education
        A2P022: MobilityImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districtsMaximum 1/3 transport with car
        A2P022: EnergyTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stabilityEnergyLocal energy production 150% of energy needOn-site energy ratio
        A2P022: Water
        A2P022: Economic developmentDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resilience
        A2P022: Housing and Community50% rental apartments and 50% owner apartments
        A2P022: Waste
        A2P022: Other
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsnoyesyesyesyesyesyesyesyes
        A2P023: Solar thermal collectorsnononononoyesyesnono
        A2P023: Wind Turbinesnonoyesnononoyesnono
        A2P023: Geothermal energy systemnononoyesyesnoyesnoyes
        A2P023: Waste heat recoverynonononoyesnoyesyesyes
        A2P023: Waste to energynonononoyesnononono
        A2P023: Polygenerationnonononononoyesnono
        A2P023: Co-generationnonononononononono
        A2P023: Heat Pumpnononoyesyesnoyesyesno
        A2P023: Hydrogennonononononoyesnono
        A2P023: Hydropower plantnonononononononono
        A2P023: Biomassnonononoyesnononono
        A2P023: Biogasnonononoyesnononono
        A2P023: Other
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)noyesnoyesyesyesyesyesyes
        A2P024: Energy management systemnoyesyesyesyesyesyesyesyes
        A2P024: Demand-side managementnonoyesnoyesnoyesyesno
        A2P024: Smart electricity gridnoyesyesnoyesyesyesyesyes
        A2P024: Thermal Storagenononoyesyesyesyesnoyes
        A2P024: Electric Storagenoyesyesyesyesyesyesnoyes
        A2P024: District Heating and Coolingnononoyesyesnoyesyesno
        A2P024: Smart metering and demand-responsive control systemsnononoyesyesyesyesnono
        A2P024: P2P – buildingsnonononoyesyesnonono
        A2P024: Other
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnonoyesyesyesnononono
        A2P025: Energy efficiency measures in historic buildingsnonononoyesyesnonono
        A2P025: High-performance new buildingsnonononoyesnoyesyesyes
        A2P025: Smart Public infrastructure (e.g. smart lighting)nonoyesnoyesnoyesyesyes
        A2P025: Urban data platformsnonoyesyesyesyesyesyesno
        A2P025: Mobile applications for citizensnonononoyesyesnonono
        A2P025: Building services (HVAC & Lighting)noyesnonoyesyesyesyesyes
        A2P025: Smart irrigationnonononoyesnononono
        A2P025: Digital tracking for waste disposalnonononoyesyesyesnono
        A2P025: Smart surveillancenononononoyesnonono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)noyesyesnoyesnonoyesno
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonoyesnoyesnoyesyesyes
        A2P026: e-Mobilitynonoyesyesyesyesyesyesyes
        A2P026: Soft mobility infrastructures and last mile solutionsnononoyesyesyesyesyesno
        A2P026: Car-free areanonononoyesnoyesnono
        A2P026: OtherLocal transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notesWalkability
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesNoYesNoYes
        A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingMiljöbyggnad silver/guldEnergy Performance Certificate => Energy efficiency class B (2018 version)
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNoNoYes
        A2P029: If yes, please specify and/or enter notesLEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD)
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC)
        • Smart cities strategies,
        • New development strategies
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Energy master planning (SECAP, etc.),
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyCity wide climate neutrality by 2035, city administration climate neutrality by 2030City strategy: Net climate neutrality 2030Relevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels.
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods,
        • Biogas,
        • Hydrogen
        A3P003: OtherNo gas grid in Brunnshög
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and priorities-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.Local waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars.- Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district.
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviour-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.Need to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection.For Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Demand management Living Lab
        • Innovative business models,
        • Local trading,
        • Existing incentives
        • Open data business models
        • Innovative business models,
        • Life Cycle Cost,
        • Circular economy models,
        • Demand management Living Lab,
        • Local trading,
        • Existing incentives
        • PPP models,
        • Other
        • PPP models,
        • Circular economy models
        • Innovative business models
        A3P006: OtherAttractivenes
        A3P007: Social models
        A3P007: Social models
        • Digital Inclusion,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Prevention of energy poverty,
        • Digital Inclusion
        • Strategies towards (local) community-building,
        • Behavioural Change / End-users engagement,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen Social Research,
        • Social incentives,
        • Quality of Life,
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Quality of Life,
        • Strategies towards social mix
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Quality of Life
        • Co-creation / Citizen engagement strategies
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning,
        • District Energy plans
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • District Energy plans,
        • City Vision 2050,
        • SECAP Updates,
        • Building / district Certification
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • District Energy plans
        • Building / district Certification
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral,
        • Low Emission Zone,
        • Pollutants Reduction,
        • Greening strategies
        • Energy Neutral,
        • Low Emission Zone,
        • Nature Based Solutions (NBS)
        • Energy Neutral,
        • Life Cycle approach
        • Net zero carbon footprint,
        • Greening strategies,
        • Sustainable Urban drainage systems (SUDS),
        • Nature Based Solutions (NBS)
        • Net zero carbon footprint,
        • Life Cycle approach,
        • Greening strategies,
        • Nature Based Solutions (NBS)
        • Other
        A3P009: OtherCarbon free in terms of energy
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.decision by the Munich City Council in 2019 to become climate neutral by 2030 / 2035Regulatory sandboxThe municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions.- Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionMunich as demonstrator together with Lyon in ASCEND projectFunctional PEDThe PED main objective is to achieve the energy transition while preserving cultural heritage and improving citizen’s quality of life.Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods.Implementation of district level heating system to make heating energy positive and expanding local renewable electricity production.Lippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentspeed and scale of PEDsBrown field development of a former industrial neighbourhood into a low-carbon, smart Positive Energy District with mixed uses.POCITYF brings together eight cities (Lightouse and Fellow cities), all having cultural heritage areas in their territory. All are intrinsically motivated to participate in the necessary energy transition not only for their conventional city districts of mixed-used, but also for districts with individually specificities as those belonging in their cultural heritage, which at the moment may be acting as barriers for their further environmental sustainability, but after POCITYF will be acting as a promising building retrofits roadmap for similar and other EU cities.The aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development.- Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholders
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaUrban areaUrban areaUrban areaUrban areaUrban areaUrban area
        B1P004: Type of district
        B2P004: Type of district
        • Renovation
        • New construction
        • Renovation
        • New construction
        • New construction
        • New construction
        B1P005: Case Study Context
        B1P005: Case Study Context
        • Retrofitting Area
        • New Development
        • Preservation Area
        • New Development
        • Re-use / Transformation Area
        • Re-use / Transformation Area,
        • New Development
        B1P006: Year of construction
        B1P006: Year of construction2022
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential60
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential61800014000
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential2000
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential2200010000
        B1P011: Population density before intervention
        B1P011: Population density before intervention000000000
        B1P012: Population density after intervention
        B1P012: Population density after intervention0000.010714285714286000.0266666666666670.0413793103448280
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnononoyesnononoyesno
        B1P013 - Residential: Specify the sqm [m²]
        B1P013: Officenonononononoyesyesno
        B1P013 - Office: Specify the sqm [m²]60000
        B1P013: Industry and Utilitynonononoyesnonoyesno
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnonononononononoyes
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnonononononononono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasnonononononoyesnoyes
        B1P013 - Natural areas: Specify the sqm [m²]2000000
        B1P013: Recreationalnonononononononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnononononononoyesno
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernonononononoyesnono
        B1P013 - Other: Specify the sqm [m²]Outdoor parking: 100000
        B1P014: Building and Land Use after intervention
        B1P014: Residentialnononoyesyesnoyesyesyes
        B1P014 - Residential: Specify the sqm [m²]600000
        B1P014: Officenonononoyesnoyesyesno
        B1P014 - Office: Specify the sqm [m²]650000
        B1P014: Industry and Utilitynonononononononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnonononoyesnonoyesyes
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnonononononoyesnono
        B1P014 - Institutional: Specify the sqm [m²]50000
        B1P014: Natural areasnonononononononono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnonononoyesnoyesyesno
        B1P014 - Recreational: Specify the sqm [m²]400000
        B1P014: Dismissed areasnonononononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernonononononononono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
        B2P002: Installation life time
        B2P002: Installation life time
        B2P003: Scale of action
        B2P003: ScaleVirtualDistrict
        B2P004: Operator of the installation
        B2P004: Operator of the installationIREC
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?No
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Strategic,
        • Private
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabResearch center/University
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Demand-side management,
        • Energy storage,
        • Energy networks,
        • Efficiency measures,
        • Information and Communication Technologies (ICT)
        • Buildings,
        • Demand-side management,
        • Prosumers,
        • Renewable generation,
        • Energy storage,
        • Energy networks,
        • Waste management,
        • E-mobility,
        • Social interactions,
        • Circular economy models
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Monitoring and evaluation infrastructure,
        • Tools for prototyping and modelling,
        • Tools, spaces, events for testing and validation
        • Monitoring and evaluation infrastructure,
        • Tools for prototyping and modelling,
        • Tools, spaces, events for testing and validation
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        • Equipment
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy,
        • Environmental
        • Energy
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        • Energy modelling
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant5 - Very important3 - Moderately important4 - Important4 - Important5 - Very important5 - Very important4 - Important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important1 - Unimportant4 - Important5 - Very important5 - Very important3 - Moderately important5 - Very important4 - Important1 - Unimportant
        C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important3 - Moderately important5 - Very important4 - Important3 - Moderately important5 - Very important5 - Very important3 - Moderately important4 - Important
        C1P001: Storage systems and E-mobility market penetration5 - Very important5 - Very important4 - Important3 - Moderately important4 - Important3 - Moderately important4 - Important4 - Important
        C1P001: Decreasing costs of innovative materials4 - Important3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant
        C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important5 - Very important5 - Very important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important5 - Very important
        C1P001: The ability to predict Multiple Benefits4 - Important4 - Important3 - Moderately important3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important4 - Important
        C1P001: The ability to predict the distribution of benefits and impacts4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important4 - Important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant5 - Very important4 - Important2 - Slightly important3 - Moderately important4 - Important5 - Very important3 - Moderately important
        C1P001: Social acceptance (top-down)5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important2 - Slightly important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant5 - Very important5 - Very important2 - Slightly important4 - Important5 - Very important3 - Moderately important2 - Slightly important
        C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant4 - Important4 - Important3 - Moderately important5 - Very important3 - Moderately important4 - Important1 - Unimportant
        C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important4 - Important4 - Important3 - Moderately important4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important5 - Very important5 - Very important3 - Moderately important4 - Important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important4 - Important3 - Moderately important3 - Moderately important5 - Very important4 - Important5 - Very important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important5 - Very important5 - Very important4 - Important2 - Slightly important4 - Important2 - Slightly important5 - Very important1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need4 - Important4 - Important4 - Important4 - Important5 - Very important5 - Very important5 - Very important5 - Very important5 - Very important
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important5 - Very important4 - Important5 - Very important4 - Important5 - Very important5 - Very important4 - Important
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
        C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important4 - Important4 - Important5 - Very important3 - Moderately important5 - Very important5 - Very important1 - Unimportant
        C1P002: Economic growth need2 - Slightly important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important4 - Important5 - Very important4 - Important4 - Important3 - Moderately important5 - Very important4 - Important3 - Moderately important
        C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant4 - Important3 - Moderately important4 - Important3 - Moderately important5 - Very important3 - Moderately important2 - Slightly important
        C1P002: Energy autonomy/independence5 - Very important5 - Very important5 - Very important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important4 - Important3 - Moderately important2 - Slightly important5 - Very important5 - Very important4 - Important4 - Important
        C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important5 - Very important2 - Slightly important
        C1P003: Lack of public participation3 - Moderately important2 - Slightly important5 - Very important4 - Important2 - Slightly important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant
        C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important3 - Moderately important5 - Very important1 - Unimportant5 - Very important4 - Important3 - Moderately important1 - Unimportant
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P003: Complicated and non-comprehensive public procurement4 - Important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P003: Fragmented and or complex ownership structure3 - Moderately important5 - Very important2 - Slightly important5 - Very important2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
        C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant
        C1P003: Lack of internal capacities to support energy transition3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
        C1P003: Any other Administrative BARRIER5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant5 - Very important4 - Important2 - Slightly important3 - Moderately important5 - Very important4 - Important1 - Unimportant
        C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important5 - Very important4 - Important1 - Unimportant
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important5 - Very important5 - Very important3 - Moderately important3 - Moderately important5 - Very important5 - Very important3 - Moderately important2 - Slightly important
        C1P005: Regulatory instability3 - Moderately important2 - Slightly important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important
        C1P005: Non-effective regulations4 - Important2 - Slightly important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important
        C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important4 - Important3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important3 - Moderately important2 - Slightly important
        C1P005: Building code and land-use planning hindering innovative technologies4 - Important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important4 - Important2 - Slightly important
        C1P005: Insufficient or insecure financial incentives4 - Important5 - Very important5 - Very important5 - Very important3 - Moderately important2 - Slightly important5 - Very important5 - Very important2 - Slightly important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
        C1P005: Shortage of proven and tested solutions and examples4 - Important4 - Important3 - Moderately important2 - Slightly important5 - Very important4 - Important2 - Slightly important3 - Moderately important
        C1P005: Any other Legal and Regulatory BARRIER4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriers?
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel4 - Important5 - Very important4 - Important4 - Important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important4 - Important
        C1P007: Deficient planning3 - Moderately important5 - Very important4 - Important3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P007: Lack of well-defined process4 - Important4 - Important4 - Important5 - Very important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
        C1P007: Inaccuracy in energy modelling and simulation4 - Important5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important
        C1P007: Lack/cost of computational scalability4 - Important4 - Important4 - Important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P007: Grid congestion, grid instability4 - Important5 - Very important5 - Very important3 - Moderately important5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
        C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
        C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia4 - Important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
        C1P008: Lack of values and interest in energy optimization measurements5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
        C1P008: Low acceptance of new projects and technologies5 - Very important5 - Very important5 - Very important4 - Important3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important3 - Moderately important
        C1P008: Difficulty of finding and engaging relevant actors5 - Very important5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant
        C1P008: Lack of trust beyond social network4 - Important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
        C1P008: Rebound effect4 - Important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
        C1P008: Hostile or passive attitude towards environmentalism5 - Very important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important2 - Slightly important
        C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important
        C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important4 - Important
        C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant5 - Very important4 - Important4 - Important4 - Important4 - Important4 - Important3 - Moderately important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts5 - Very important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant
        C1P009: Lack of awareness among authorities2 - Slightly important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important
        C1P009: High costs of design, material, construction, and installation5 - Very important5 - Very important5 - Very important3 - Moderately important4 - Important5 - Very important4 - Important4 - Important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important
        C1P010: Insufficient external financial support and funding for project activities5 - Very important4 - Important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important3 - Moderately important
        C1P010: Economic crisis4 - Important3 - Moderately important3 - Moderately important4 - Important3 - Moderately important5 - Very important4 - Important4 - Important
        C1P010: Risk and uncertainty5 - Very important4 - Important4 - Important4 - Important2 - Slightly important5 - Very important3 - Moderately important3 - Moderately important
        C1P010: Lack of consolidated and tested business models5 - Very important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important
        C1P010: Limited access to capital and cost disincentives5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives4 - Important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important
        C1P011: Energy price distortion5 - Very important5 - Very important5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important
        C1P011: Energy market concentration, gatekeeper actors (DSOs)5 - Very important5 - Very important3 - Moderately important3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important3 - Moderately important
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • None
        • Monitoring/operation/management
        • Planning/leading,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: Research & Innovation
        • None
        • Monitoring/operation/management
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation
        C1P012: Financial/Funding
        • None
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: Analyst, ICT and Big Data
        • Monitoring/operation/management
        • Construction/implementation
        • Monitoring/operation/management
        • Planning/leading,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        C1P012: Business process management
        • Design/demand aggregation
        • Design/demand aggregation,
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: Urban Services providers
        • Planning/leading
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Construction/implementation
        • None
        C1P012: Real Estate developers
        • Planning/leading
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Design/Construction companies
        • Design/demand aggregation
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: End‐users/Occupants/Energy Citizens
        • None
        • Design/demand aggregation
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Social/Civil Society/NGOs
        • Monitoring/operation/management
        • None
        • Planning/leading
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: Industry/SME/eCommerce
        • Planning/leading
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Other
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)